المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تقسيم اسئلة المعلومات- ج- سؤال الضوء الجانبي
5-5-2022
النسبة التحليليّة
14-9-2016
تـصنـيف الـدول النـامـية حسـب مـعايير الهيـئات الدوليـة
13-1-2023
demotion (n.)
2023-08-08
التحضر ومشكلات المدن - تاريخ التحضر
2-3-2020
النياسين Niacin (فيتامين B3)
2023-11-19

Diophantine Equation--2nd Powers  
  
1843   04:07 مساءً   date: 20-5-2020
Author : Bell, E. T
Book or Source : The Development of Mathematics, 2nd ed. New York: McGraw-Hill
Page and Part : ...


Read More
Date: 9-8-2020 1465
Date: 23-11-2019 650
Date: 23-2-2020 571

Diophantine Equation--2nd Powers

A general quadratic Diophantine equation in two variables x and y is given by

 ax^2+cy^2=k,

(1)

where ac, and k are specified (positive or negative) integers and x and y are unknown integers satisfying the equation whose values are sought. The slightly more general second-order equation

 ax^2+bxy+cy^2=k

(2)

is one of the principal topics in Gauss's Disquisitiones arithmeticae. According to Itô (1987), equation (2) can be solved completely using solutions to the Pell equation. In particular, all solutions of

 ax^2+bxy+cy^2=1

(3)

are among the convergents of the continued fractions of the roots of ax^2+bx+c.

Solution to the general bivariate quadratic Diophantine equation is implemented in the Wolfram Language as Reduce[eqn && Element[x|yIntegers], {xy}].

For quadratic Diophantine equations in more than two variables, there exist additional deep results due to C. L. Siegel.

An equation of the form

 x^2-Dy^2=1,

(4)

where D is an integer is a very special type of equation called a Pell equation. Pell equations, as well as the analogous equation with a minus sign on the right, can be solved by finding the continued fraction for sqrt(D). The more complicated equation

 x^2-Dy^2=c

(5)

can also be solved for certain values of c and D, but the procedure is more complicated (Chrystal 1961). However, if a single solution to (5) is known, other solutions can be found using the standard technique for the Pell equation.

The following table summarizes possible representation of primes p of given forms, where x and y are positive integers. No odd primes other than those indicated share these properties (Nagell 1951, p. 188).

form congruence for p
x^2+y^2 =1 (mod 4)
x^2+2y^2 =1,3 (mod 8)
x^2+3y^2 =1 (mod 6)
x^2+7y^2 =1,9,11 (mod 14)
2x^2+3y^2 =5,11 (mod 24)

As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 4 positive squares (g(2)=4; Lagrange's four-square theorem), that every "sufficiently large" integer is a sum of no more than 4 positive squares (G(2)=4), and that every integer is a sum of at most 3 signed squares (eg(2)=3). If zero is counted as a square, both positive and negative numbers are included, and the order of the two squares is distinguished, Jacobi showed that the number of ways a number can be written as the sum of two squares (the r_2(n) function) is four times the excess of the number of divisors of the form 4x+1 over the number of divisors of the form 4x-1.

Given an initial solution (x,y,z)=(m,n,p) to the equation

 ax^2+bxy+cy^2=dz^2,

(6)

a quadratic parametrization can be found using the identity

 (ax^2+bxy+cy^2-dz^2) 
 =(am^2+bmn+cn^2-dp^2)(au^2+buv+cv^2)^2,

(7)

where

x = (am+bn)u^2+2cnuv-cmv^2

(8)

y = -anu^2+2amuv+(bm+cn)v^2

(9)

z = p(au^2+buv+cv^2)

(10)

for arbitrary u,v (T. Piezas, pers. comm., Apr. 28, 2006).

In 1769 Euler (1862) noted the identity

 alphab(apr+/-betaqs)^2+abeta(alphaps∓bqr)^2=(aalphap^2+bbetaq^2)(abr^2+alphabetas^2),

(11)

which gives a parametric solution to the equation

 Ax^2+By^2=C

(12)

for integers A,B,C,x,y with C composite (Dickson 2005, p. 407).

Call a Diophantine equation consisting of finding a sum of m kth powers which is equal to a sum of n kth powers a "k.m.n equation." The 2.1.2 quadratic Diophantine equation

 A^2=B^2+C^2,

(13)

corresponds to finding a Pythagorean triple (ABC) has a well-known general solution (Dickson 2005, pp. 165-170). To solve the equation, note that every prime of the form 4x+1 can be expressed as the sum of two relatively prime squares in exactly one way. A set of integers satisfying the 2.1.3 equation

 A^2=B^2+C^2+D^2

(14)

is called a Pythagorean quadruple.

Parametric solutions to the 2.2.2 equation

 A^2+B^2=C^2+D^2

(15)

are known (Dickson 2005; Guy 1994, p. 140). The number of solutions are given by the sum of squares function r_2(n).

Solutions to an equation of the form

 (A^2+B^2)(C^2+D^2)=E^2+F^2

(16)

are given by the Fibonacci identity

 (a^2+b^2)(c^2+d^2)=(ac+/-bd)^2+(bc∓ad)^2=e^2+f^2.

(17)

Another similar identity is the Euler four-square identity

 (a_1^2+a_2^2)(b_1^2+b_2^2)(c_1^2+c_2^2)(d_1^2+d_2^2)=e_1^2+e_2^2+e_3^2+e_4^2

(18)

 (a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2) 
=(a_1b_1-a_2b_2-a_3b_3-a_4b_4)^2+(a_1b_2+a_2b_1+a_3b_4-a_4b_3)^2+(a_1b_3-a_2b_4+a_3b_1+a_4b_2)^2+(a_1b_4+a_2b_3-a_3b_2+a_4b_1)^2.

(19)

Degen's eight-square identity holds for eight squares, but no other number, as proved by Cayley. The two-square identity underlies much of trigonometry, the four-square identity some of quaternions, and the eight-square identity, the Cayley algebra (a noncommutative nonassociative algebra; Bell 1945).

Chen Shuwen found the 2.6.6 equation

 87^2+233^2+264^2+396^2+496^2+540^2=90^2+206^2+309^2+366^2+522^2+523^2.

(20)

Ramanujan's square equation

 2^n-7=x^2

(21)

has been proved to have only solutions n=3, 4, 5, 7, and 15 (Schroeppel 1972; OEIS A060728). In an unpublished proof, Euler showed that the quadratic Diophantine equation

 2^n=7x^2+y^2

(22)

has a unique solution for every positive n>=3 in which x and y are both odd and positive (Engel 1998, p. 126). Rather amazingly, these can be given analytically by

x = (2^(n/2))/(sqrt(7))|sin[ntan^(-1)(sqrt(7))]|

(23)

y = 2^(n/2)|cos[ntan^(-1)(sqrt(7))]|,

(24)

which is related to the norms of elements of the ring of integers in the quadratic field Q(sqrt(-7)) which exhibits unique factorization (Hickerson 2002). The first few solutions (x,y) for n=1, 2, 3, ... are (1, 1), (1, 3), (1, 5), (3, 1), (1, 11), (5, 9), (7, 13), (3, 31), ... (OEIS A077020 and A077021).


REFERENCES:

Beiler, A. H. "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, pp. 248-268, 1966.

Bell, E. T. The Development of Mathematics, 2nd ed. New York: McGraw-Hill, p. 159, 1945.

Chrystal, G. Textbook of Algebra, 2 vols. New York: Chelsea, 1961.

Degan, C. F. Canon Pellianus. Copenhagen, Denmark, 1817.

Dickson, L. E. "Number of Representations as a Sum of 5, 6, 7, or 8 Squares." Ch. 13 in Studies in the Theory of Numbers. Chicago, IL: University of Chicago Press, 1930.

Dickson, L. E. "Pell Equation; ax^2+bx+c Made a Square" and "Further Single Equations of the Second Degree." Chs. 12-13 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 341-434, 2005.

Engel, A. Problem-Solving Strategies. New York: Springer-Verlag, 1998.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Hickerson, D. "Re: Diophantine sequence" seqfan@ext.jussieu.fr mailing list. 17 Oct 2002.

Itô, K. (Ed.). Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 450, 1987.

Lam, T. Y. The Algebraic Theory of Quadratic Forms. Reading, MA: W. A. Benjamin, 1973.

Nagell, T. "Diophantine Equations of the Second Degree." Ch. 6 in Introduction to Number Theory. New York: Wiley, pp. 188-226, 1951.

Rajwade, A. R. Squares. Cambridge, England: Cambridge University Press, 1993.

Scharlau, W. Quadratic and Hermitian Forms. Berlin: Springer-Verlag, 1985.

Schroeppel, R. Item 31 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 14, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item31.

Shapiro, D. B. "Products of Sums and Squares." Expo. Math. 2, 235-261, 1984.

Sloane, N. J. A. Sequences A060728, A077020, and A077021 in "The On-Line Encyclopedia of Integer Sequences."

Smarandache, F. "Un metodo de resolucion de la ecuacion diofantica." Gaz. Math. 1, 151-157, 1988.

Smarandache, F. "Method to Solve the Diophantine Equation ax^2-by^2+c=0." In Collected Papers, Vol. 1. Bucharest, Romania: Tempus, 1996.

Taussky, O. "Sums of Squares." Amer. Math. Monthly 77, 805-830, 1970.

Whitford, E. E. The Pell Equation. New York: Columbia University Press, 1912.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.