Read More
Date: 28-11-2020
![]()
Date: 30-12-2019
![]()
Date: 22-12-2020
![]() |
Let denote the partition lattice of the set
. The maximum element of
is
![]() |
(1) |
and the minimum element is
![]() |
(2) |
Let denote the number of chains of any length in
containing both
and
. Then
satisfies the recurrence relation
![]() |
(3) |
where and
is a Stirling number of the second kind. The first few values of
for
, 2, ... are then 1, 1, 4, 32, 436, 9012, 262760, ... (OEIS A005121).
Lengyel (1984) proved that the quotient
![]() |
(4) |
is bounded between two constants as , and Flajolet and Salvy (1990) improved the result of Babai and Lengyel (1992) to show that
![]() |
(5) |
(OEIS A086053).
REFERENCES:
Babai, L. and Lengyel, T. "A Convergence Criterion for Recurrent Sequences with Application to the Partition Lattice." Analysis 12, 109-119, 1992.
Finch, S. R. "Lengyel's Constant." §5.7 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 316-321, 2003.
Flajolet, P. and Salvy, B. "Hierarchal Set Partitions and Analytic Iterates of the Exponential Function." Unpublished manuscript, 1990.
Lengyel, T. "On a Recurrence Involving Stirling Numbers." Europ. J. Comb. 5, 313-321, 1984.
Sloane, N. J. A. Sequences A005121/M3649 and A086053 in "The On-Line Encyclopedia of Integer Sequences."
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|