 
					
					
						Euler-Maclaurin Integration Formulas					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 9-12-2021
						9-12-2021
					
					
						 2283
						2283					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Euler-Maclaurin Integration Formulas
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial  in for the function
 in for the function  . Differentiating the identity
. Differentiating the identity
	
		
			|  | (1) | 
	
 times gives
 times gives
	
		
			|  | (2) | 
	
Plugging in  gives
 gives  . From the Maclaurin series of
. From the Maclaurin series of  with
 with  , we have
, we have
where  is a Bernoulli number, and substituting these values of
 is a Bernoulli number, and substituting these values of  and
 and  into Darboux's formula gives
 into Darboux's formula gives
	
		
			|  | (7) | 
	
which is the Euler-Maclaurin integration formula (Whittaker and Watson 1990, p. 128). It holds when the function  is analytic in the integration region
 is analytic in the integration region
In certain cases, the last term tends to 0 as  , and an infinite series can then be obtained for
, and an infinite series can then be obtained for  . In such cases, sums may be converted to integrals by inverting the formula to obtain the Euler-Maclaurin sum formula
. In such cases, sums may be converted to integrals by inverting the formula to obtain the Euler-Maclaurin sum formula
	
		
			| ![sum_(k=1)^(n-1)f_k=int_0^nf(k)dk-1/2[f(0)+f(n)]+sum_(k=1)^infty(B_(2k))/((2k)!)[f^((2k-1))(n)-f^((2k-1))(0)],](https://mathworld.wolfram.com/images/equations/Euler-MaclaurinIntegrationFormulas/NumberedEquation4.gif) | (8) | 
	
which, when expanded, gives
	
		
			|  | (9) | 
	
(Abramowitz and Stegun 1972, p. 16). The Euler-Maclaurin sum formula is implemented in the Wolfram Language as the function NSum with option Method -> "EulerMaclaurin".
The second Euler-Maclaurin integration formula is used when  is tabulated at
 is tabulated at  values
 values  ,
,  , ...,
, ...,  :
:
	
		
			| ![int_(x_1)^(x_n)f(x)dx=h[f_(3/2)+f_(5/2)+f_(7/2)+...+f_(n-3/2)+f_(n-1/2)] 
 -sum_(k=1)^infty(B_(2k)h^(2k))/((2k)!)(1-2^(-2k+1))[f_n^((2k-1))-f_1^((2k-1))].](https://mathworld.wolfram.com/images/equations/Euler-MaclaurinIntegrationFormulas/NumberedEquation6.gif) | (10) | 
	
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 16 and 806, 1972.
Apostol, T. M. "An Elementary View of Euler's Summation Formula." Amer. Math. Monthly 106, 409-418, 1999.
Arfken, G. "Bernoulli Numbers, Euler-Maclaurin Formula." §5.9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 327-338, 1985.
Borwein, J. M.; Borwein, P. B.; and Dilcher, K. "Pi, Euler Numbers, and Asymptotic Expansions." Amer. Math. Monthly 96, 681-687, 1989.
Euler, L. Comm. Acad. Sci. Imp. Petrop. 6, 68, 1738.
Havil, J. "Euler-Maclaurin Summation." §10.2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 85-86, 2003.
Knopp, K. Theory and Application of Infinite Series. New York: Dover, 1990.
Maclaurin, C. Treatise of Fluxions. Edinburgh, p. 672, 1742.
Vardi, I. "The Euler-Maclaurin Formula." §8.3 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 159-163, 1991.
Whittaker, E. T. and Robinson, G. "The Euler-Maclaurin Formula." §67 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 134-136, 1967.
Whittaker, E. T. and Watson, G. N. "The Euler-Maclaurin Expansion." §7.21 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 127-128, 1990.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة