 
					
					
						Laguerre,s Method					
				 
				
					
						 المؤلف:  
						Acton, F. S
						 المؤلف:  
						Acton, F. S					
					
						 المصدر:  
						Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.
						 المصدر:  
						Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 12-12-2021
						12-12-2021
					
					
						 1529
						1529					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Laguerre's Method
A root-finding algorithm which converges to a complex root from any starting position. To motivate the formula, consider an  th order polynomial and its derivatives,
th order polynomial and its derivatives,
Now consider the logarithm and logarithmic derivatives of 
Now make "a rather drastic set of assumptions" that the root  being sought is a distance
 being sought is a distance  from the current best guess, so
 from the current best guess, so
	
		
			|  | (11) | 
	
while all other roots are at the same distance  , so
, so
	
		
			|  | (12) | 
	
for  , 3, ...,
, 3, ...,  (Acton 1990; Press et al. 1992, p. 365). This allows
 (Acton 1990; Press et al. 1992, p. 365). This allows  and
 and  to be expressed in terms of
 to be expressed in terms of  and
 and  as
 as
Solving these simultaneously for  gives
 gives
	
		
			| ![a=n/(max[G+/-sqrt((n-1)(nH-G^2))]),](https://mathworld.wolfram.com/images/equations/LaguerresMethod/NumberedEquation3.gif) | (15) | 
	
where the sign is taken to give the largest magnitude for the denominator.
To apply the method, calculate  for a trial value
 for a trial value  , then use
, then use  as the next trial value, and iterate until
 as the next trial value, and iterate until  becomes sufficiently small. For example, for the polynomial
 becomes sufficiently small. For example, for the polynomial  with starting point
 with starting point  , the algorithmic converges to the real root very quickly as (
, the algorithmic converges to the real root very quickly as ( ,
,  ,
,  ).
).
Setting  gives Halley's irrational formula.
 gives Halley's irrational formula.
REFERENCES:
Acton, F. S. Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.
Adams, D. A. "A Stopping Criterion for Polynomial Root Finding." Comm. ACM 10, 655-658, 1967.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 365-366, 1992.
Ralston, A. and Rabinowitz, P. §8.9-8.13 in A First Course in Numerical Analysis, 2nd ed. New York: McGraw-Hill, 1978.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة