 
					
					
						Lobatto Quadrature					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 7-12-2021
						7-12-2021
					
					
						 2022
						2022					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Lobatto Quadrature
Also called Radau quadrature (Chandrasekhar 1960). A Gaussian quadrature with weighting function  in which the endpoints of the interval
 in which the endpoints of the interval ![[-1,1]](https://mathworld.wolfram.com/images/equations/LobattoQuadrature/Inline2.gif) are included in a total of
 are included in a total of  abscissas, giving
 abscissas, giving  free abscissas. Abscissas are symmetrical about the origin, and the general formula is
 free abscissas. Abscissas are symmetrical about the origin, and the general formula is
	
		
			|  | (1) | 
	
The free abscissas  for
 for  , ...,
, ...,  are the roots of the polynomial
 are the roots of the polynomial  , where
, where  is a Legendre polynomial. The weights of the free abscissas are
 is a Legendre polynomial. The weights of the free abscissas are
and of the endpoints are
	
		
			|  | (4) | 
	
The error term is given by
	
		
			| ![E=-(n(n-1)^32^(2n-1)[(n-2)!]^4)/((2n-1)[(2n-2)!]^3)f^((2n-2))(xi),](https://mathworld.wolfram.com/images/equations/LobattoQuadrature/NumberedEquation3.gif) | (5) | 
	
for  . Beyer (1987) gives a table of parameters up to
. Beyer (1987) gives a table of parameters up to  and Chandrasekhar (1960) up to
 and Chandrasekhar (1960) up to  (although Chandrasekhar's
 (although Chandrasekhar's  for
 for  is incorrect).
 is incorrect).
	
		
			|  |  |  |  |  | 
		
			| 3 | 0 | 0.00000 |  | 1.333333 | 
		
			|  |  |  |  | 0.333333 | 
		
			| 4 |  |  |  | 0.833333 | 
		
			|  |  |  |  | 0.166667 | 
		
			| 5 | 0 | 0.000000 |  | 0.711111 | 
		
			|  |  |  |  | 0.544444 | 
		
			|  |  |  |  | 0.100000 | 
		
			| 6 |  |  |  | 0.554858 | 
		
			|  |  |  |  | 0.378475 | 
		
			|  |  |  |  | 0.066667 | 
	
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 888-890, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 465, 1987.
Chandrasekhar, S. Radiative Transfer. New York: Dover, pp. 63-64, 1960.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 343-345, 1956.
Hunter, D. and Nikolov, G. "On the Error Term of Symmetric Gauss-Lobatto Quadrature Formulae for Analytic Functions." Math. Comput. 69, 269-282, 2000.
Ueberhuber, C. W. Numerical Computation 2: Methods, Software, and Analysis. Berlin: Springer-Verlag, p. 105, 1997.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة