 
					
					
						Gaussian Quadrature					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 5-12-2021
						5-12-2021
					
					
						 2097
						2097					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Gaussian Quadrature
Seeks to obtain the best numerical estimate of an integral by picking optimal abscissas  at which to evaluate the function
 at which to evaluate the function  . The fundamental theorem of Gaussian quadrature states that the optimal abscissas of the
. The fundamental theorem of Gaussian quadrature states that the optimal abscissas of the  -point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function. Gaussian quadrature is optimal because it fits all polynomials up to degree
-point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function. Gaussian quadrature is optimal because it fits all polynomials up to degree  exactly. Slightly less optimal fits are obtained from Radau quadrature and Laguerre-Gauss quadrature.
 exactly. Slightly less optimal fits are obtained from Radau quadrature and Laguerre-Gauss quadrature.
To determine the weights corresponding to the Gaussian abscissas  , compute a Lagrange interpolating polynomial for
, compute a Lagrange interpolating polynomial for  by letting
 by letting
	
		
			|  | (1) | 
	
(where Chandrasekhar 1967 uses  instead of
 instead of  ), so
), so
	
		
			|  | (2) | 
	
Then fitting a Lagrange interpolating polynomial through the  points gives
 points gives
	
		
			|  | (3) | 
	
for arbitrary points  . We are therefore looking for a set of points
. We are therefore looking for a set of points  and weights
 and weights  such that for a weighting function
 such that for a weighting function  ,
,
with weight
	
		
			|  | (6) | 
	
The weights  are sometimes also called the Christoffel numbers (Chandrasekhar 1967). For orthogonal polynomials
 are sometimes also called the Christoffel numbers (Chandrasekhar 1967). For orthogonal polynomials  with
 with  , ...,
, ...,  ,
,
	
		
			|  | (7) | 
	
(Hildebrand 1956, p. 322), where  is the coefficient of
 is the coefficient of  in
 in  , then
, then
where
	
		
			| ![gamma_m=int[phi_m(x)]^2W(x)dx.](https://mathworld.wolfram.com/images/equations/GaussianQuadrature/NumberedEquation6.gif) | (10) | 
	
Using the relationship
	
		
			|  | (11) | 
	
(Hildebrand 1956, p. 323) gives
	
		
			|  | (12) | 
	
(Note that Press et al. 1992 omit the factor  .) In Gaussian quadrature, the weights are all positive. The error is given by
.) In Gaussian quadrature, the weights are all positive. The error is given by
where  (Hildebrand 1956, pp. 320-321).
 (Hildebrand 1956, pp. 320-321).
Other curious identities are
	
		
			|  | (15) | 
	
and
(Hildebrand 1956, p. 323).
In the notation of Szegö (1975), let  be an ordered set of points in
 be an ordered set of points in ![[a,b]](https://mathworld.wolfram.com/images/equations/GaussianQuadrature/Inline70.gif) , and let
, and let  , ...,
, ...,  be a set of real numbers. If
 be a set of real numbers. If  is an arbitrary function on the closed interval
 is an arbitrary function on the closed interval ![[a,b]](https://mathworld.wolfram.com/images/equations/GaussianQuadrature/Inline74.gif) , write the Gaussian quadrature as
, write the Gaussian quadrature as
	
		
			|  | (18) | 
	
Here  are the abscissas and
 are the abscissas and  are the Cotes numbers.
 are the Cotes numbers.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 887-888, 1972.
Acton, F. S. Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., p. 103, 1990.
Arfken, G. "Appendix 2: Gaussian Quadrature." Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 968-974, 1985.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 461, 1987.
Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, 1967.
Gauss, C. F. "Methodus nova integralium valores per approximationem inveniendi." Commentationes Societatis regiae scientarium Gottingensis recentiores 3, 39-76, 1814. Reprinted in Werke, Vol. 3. New York: George Olms, p. 163, 1981.
Golub, G. H. and Welsh, J. H. "Calculation of Gauss Quadrature Rules." Math. Comput. 23, 221-230, 1969.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 319-323, 1956.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Gaussian Quadratures and Orthogonal Polynomials." §4.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 140-155, 1992.
Stroud, A. H. and Secrest, D. Gaussian Quadrature Formulas. Englewood Cliffs, NJ: Prentice-Hall, 1966.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 37-48 and 340-349, 1975.
Whittaker, E. T. and Robinson, G. "Gauss's Formula of Numerical Integration." §80 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 152-163, 1967.
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة