 
					
					
						Convergence Improvement					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 9-12-2021
						9-12-2021
					
					
						 2168
						2168					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Convergence Improvement
The improvement of the convergence properties of a series, also called convergence acceleration or accelerated convergence, such that a series reaches its limit to within some accuracy with fewer terms than required before. Convergence improvement can be effected by forming a linear combination with a series whose sum is known. Useful sums include
Kummer's transformation takes a convergent series
	
		
			|  | (5) | 
	
and another convergent series
	
		
			|  | (6) | 
	
with known  such that
 such that
	
		
			|  | (7) | 
	
Then a series with more rapid convergence to the same value is given by
	
		
			|  | (8) | 
	
(Abramowitz and Stegun 1972).
The Euler transform takes a convergent alternating series
	
		
			|  | (9) | 
	
into a series with more rapid convergence to the same value to
	
		
			|  | (10) | 
	
where
	
		
			|  | (11) | 
	
(Abramowitz and Stegun 1972; Beeler et al. 1972).
A general technique that can be used to acceleration converge of series is to expand them in a Taylor series about infinity and interchange the order of summation. In cases where a symbolic form for the Taylor series can be found, this come sometimes even allow the sum over the original variable to be done symbolically. For example, consider the case of the sum
	
		
			|  | (12) | 
	
(OEIS A085361) that arises in the definition of the Alladi-Grinstead constant. The summand can be expanded about infinity to get
Interchanging the order of summation then gives
where  is the Riemann zeta function, which converges much more rapidly.
 is the Riemann zeta function, which converges much more rapidly.
A transformations of the form
	
		
			|  | (17) | 
	
where
	
		
			|  | (18) | 
	
is the  th partial sum of a sequence
th partial sum of a sequence ![<span style=]() {a_k}_(k=0)^infty" src="https://mathworld.wolfram.com/images/equations/ConvergenceImprovement/Inline28.gif" style="height:17px; width:42px" />, can often be useful for improving series convergence (Hamming 1986, p. 205). In particular,
{a_k}_(k=0)^infty" src="https://mathworld.wolfram.com/images/equations/ConvergenceImprovement/Inline28.gif" style="height:17px; width:42px" />, can often be useful for improving series convergence (Hamming 1986, p. 205). In particular,  can be written
 can be written
The application of this transformation can be efficiently carried out using Wynn's epsilon method. Letting  ,
,  , and
, and
	
		
			|  | (21) | 
	
for  , 2, ... (correcting the typo of Hamming 1986, p. 206). The values of
, 2, ... (correcting the typo of Hamming 1986, p. 206). The values of  are there equivalent to the results of applying
 are there equivalent to the results of applying  transformations to the sequence
 transformations to the sequence  (Hamming 1986, p. 206).
 (Hamming 1986, p. 206).
Given a series of the form
	
		
			|  | (22) | 
	
where  is an analytic at 0 and on the closed unit disk, and
 is an analytic at 0 and on the closed unit disk, and
	
		
			|  | (23) | 
	
then the series can be rearranged to
where
	
		
			|  | (27) | 
	
is the Maclaurin series of  and
 and  is the Riemann zeta function (Flajolet and Vardi 1996). The transformed series exhibits geometric convergence. Similarly, if
 is the Riemann zeta function (Flajolet and Vardi 1996). The transformed series exhibits geometric convergence. Similarly, if  is analytic in
 is analytic in  for some positive integer
 for some positive integer  , then
, then
	
		
			| ![S=sum_(n=1)^(n_0-1)f(1/n)+sum_(m=2)^inftyf_m[zeta(m)-1/(1^m)-...-1/((n_0-1)^m)],](https://mathworld.wolfram.com/images/equations/ConvergenceImprovement/NumberedEquation15.gif) | (28) | 
	
which converges geometrically (Flajolet and Vardi 1996). Equation (28) can also be used to further accelerate the convergence of series (◇).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 288-289, 1985.
Beeler et al. Item 120 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 55, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/series.html#item120.
Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.
Hamming, R. W. Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, pp. 206-207, 1986.
Shanks, D. "Nonlinear Transformations of Divergent and Slowly Convergent Sequences." J. Math. Phys. 34, 1-42, 1955.
Sloane, N. J. A. Sequence A085361 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  التحليل العددي
					 الاكثر قراءة في  التحليل العددي					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة