Laguerre-Gauss Quadrature
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
5-12-2021
1225
Laguerre-Gauss Quadrature
Laguerre-Gauss quadrature, also called Gauss-Laguerre quadrature or Laguerre quadrature, is a Gaussian quadrature over the interval
with weighting function
(Abramowitz and Stegun 1972, p. 890). It fits all polynomials of degree
exactly (Chandrasekhar 1960, p. 61).
The abscissas for quadrature order
are given by the roots of the Laguerre polynomials
. The weights are
where
is the coefficient of
in
. For Laguerre polynomials,
 |
(3)
|
where
is a factorial, so
Additionally,
![gamma_n=int_0^inftyW(x)[L_n(x)]^2dx=1,](https://mathworld.wolfram.com/images/equations/Laguerre-GaussQuadrature/NumberedEquation2.gif) |
(6)
|
so
Using the recurrence relation
which, since
is a root of
, gives
 |
(11)
|
so (10) becomes
 |
(12)
|
gives
The error term is
 |
(15)
|
(Abramowitz and Stegun 1972, p. 890).
Beyer (1987) gives a table of abscissas and weights up to
.
 |
 |
 |
| 2 |
0.585786 |
0.853553 |
| |
3.41421 |
0.146447 |
| 3 |
0.415775 |
0.711093 |
| |
2.29428 |
0.278518 |
| |
6.28995 |
0.0103893 |
| 4 |
0.322548 |
0.603154 |
| |
1.74576 |
0.357419 |
| |
4.53662 |
0.0388879 |
| |
9.39507 |
0.000539295 |
| 5 |
0.26356 |
0.521756 |
| |
1.4134 |
0.398667 |
| |
3.59643 |
0.0759424 |
| |
7.08581 |
0.00361176 |
| |
12.6408 |
0.00002337 |
The abscissas and weights can be computed analytically for small
.
For the generalized Laguerre polynomial
with weighting function
,
 |
(16)
|
is the coefficient of
in
and
where
is the gamma function. The weights are then
and the error term is
 |
(21)
|
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 890 and 923, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 463, 1987.
Chandrasekhar, S. Radiative Transfer. New York: Dover, pp. 61 and 64-65, 1960.
Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 325-327, 1956.
الاكثر قراءة في التحليل العددي
اخر الاخبار
اخبار العتبة العباسية المقدسة