المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

مسؤولية المربين
2023-06-06
المرايا المستوية
10-1-2016
عاثيات الاكتينو مايسيتات Actionphages
6-4-2017
انواع الفرص التسويقية وتقييم الفرص التسويقية الكلية 1
17-5-2020
Walter Feit
19-3-2018
حكم القنوت في الوتر.
14-1-2016

Varahamihira  
  
1191   02:42 صباحاً   date: 21-10-2015
Author : G Ifrah
Book or Source : A universal history of numbers : From prehistory to the invention of the computer
Page and Part : ...


Read More
Date: 15-10-2015 1059
Date: 21-10-2015 1474
Date: 21-10-2015 1070

Born: 505 in Kapitthaka, India
Died: 587 in India

 

Our knowledge of Varahamihira is very limited indeed. According to one of his works, he was educated in Kapitthaka. However, far from settling the question this only gives rise to discussions of possible interpretations of where this place was. Dhavale in [3] discusses this problem. We do not know whether he was born in Kapitthaka, wherever that may be, although we have given this as the most likely guess. We do know, however, that he worked at Ujjain which had been an important centre for mathematics since around 400 AD. The school of mathematics at Ujjain was increased in importance due to Varahamihira working there and it continued for a long period to be one of the two leading mathematical centres in India, in particular having Brahmagupta as its next major figure.

The most famous work by Varahamihira is the Pancasiddhantika (The Five Astronomical Canons) dated 575 AD. This work is important in itself and also in giving us information about older Indian texts which are now lost. The work is a treatise on mathematical astronomy and it summarises five earlier astronomical treatises, namely the Surya, Romaka, Paulisa, Vasistha and Paitamaha siddhantas. Shukla states in [11]:-

The Pancasiddhantika of Varahamihira is one of the most important sources for the history of Hindu astronomy before the time of Aryabhata I I.

One treatise which Varahamihira summarises was the Romaka-Siddhanta which itself was based on the epicycle theory of the motions of the Sun and the Moon given by the Greeks in the 1st century AD. The Romaka-Siddhanta was based on the tropical year of Hipparchus and on the Metonic cycle of 19 years. Other works which Varahamihira summarises are also based on the Greek epicycle theory of the motions of the heavenly bodies. He revised the calendar by updating these earlier works to take into account precession since they were written. The Pancasiddhantika also contains many examples of the use of a place-value number system.

There is, however, quite a debate about interpreting data from Varahamihira's astronomical texts and from other similar works. Some believe that the astronomical theories are Babylonian in origin, while others argue that the Indians refined the Babylonian models by making observations of their own. Much needs to be done in this area to clarify some of these interesting theories.

In [1] Ifrah notes that Varahamihira was one of the most famous astrologers in Indian history. His work Brihatsamhita (The Great Compilation) discusses topics such as [1]:-

... descriptions of heavenly bodies, their movements and conjunctions, meteorological phenomena, indications of the omens these movements, conjunctions and phenomena represent, what action to take and operations to accomplish, sign to look for in humans, animals, precious stones, etc.

Varahamihira made some important mathematical discoveries. Among these are certain trigonometric formulae which translated into our present day notation correspond to

sin x = cos(π/2 - x),

sin2x + cos2x = 1, and

(1 - cos 2x)/2 = sin2x.

Another important contribution to trigonometry was his sine tables where he improved those of Aryabhata I giving more accurate values. It should be emphasised that accuracy was very important for these Indian mathematicians since they were computing sine tables for applications to astronomy and astrology. This motivated much of the improved accuracy they achieved by developing new interpolation methods.

The Jaina school of mathematics investigated rules for computing the number of ways in which r objects can be selected from n objects over the course of many hundreds of years. They gave rules to compute the binomial coefficients nCr which amount to

nCr = n(n-1)(n-2)...(n-r+1)/r!

However, Varahamihira attacked the problem of computing nCr in a rather different way. He wrote the numbers n in a column with n = 1 at the bottom. He then put the numbers r in rows with r = 1 at the left-hand side. Starting at the bottom left side of the array which corresponds to the values n = 1, r = 1, the values of nCr are found by summing two entries, namely the one directly below the (nr) position and the one immediately to the left of it. Of course this table is none other than Pascal's triangle for finding the binomial coefficients despite being viewed from a different angle from the way we build it up today. Full details of this work by Varahamihira is given in [5].

Hayashi, in [6], examines Varahamihira's work on magic squares. In particular he examines a pandiagonal magic square of order four which occurs in Varahamihira's work.


 

Books:

  1. G Ifrah, A universal history of numbers : From prehistory to the invention of the computer (London, 1998).

Articles:

  1. G Abraham, Theories for the motion of the Sun in the Pancasiddhantika, Arch. Hist. Exact Sci. 34 (3) (1985), 221-230.
  2. D G Dhavale, The Kapitthaka of Varahamihira, in Proceedings of the Symposium on Copernicus and Astronomy, New Delhi, 1973, Indian J. History Sci. 9 (1) (1974), 77-78; 141.
  3. Ghayasuddin, Varahamihira, the best Sanskrit source of al-Biruni on Indian Jyotisa, in Proceedings of the Symposium on al-Biruni and Indian Sciences, New Delhi, 1971, Indian J. History Sci. 10 (2) (1975), 139-152;159-160.
  4. R C Gupta, Varahamihira's calculation of ِC¨ and the discovery of Pascal's triangle, Ganita Bharati 14 (1-4) (1992), 45-49.
  5. T Hayashi, Varahamihira's pandiagonal magic square of the order four, Historia Math. 14 (2) (1987), 159-166.
  6. T S Kuppanna Sastry, The Vasistha-Paulisa Venus in the Pancasiddhantika of Varahamihira, Indian J. Hist. Sci. 14 (2) (1979), 150-154.
  7. O Neugebauer and D Pingree, The Pancasiddhantika of Varahamihira. I, Hist.-Filos. Skr. Danske Vid. Selsk. 6 (1) (1970).
  8. O Neugebauer and D Pingree, The Pancasiddhantika of Varahamihira. II, Hist.-Filos. Skr. Danske Vid. Selsk. 6 (2) (1971).
  9. K S Shukla, The Panca-siddhantika of Varahamihira. II, Ganita 28 (1977), 99-116.
  10. K S Shukla, The Pancasiddhantika of Varahamihira. I, in Proceedings of the Symposium on Copernicus and Astronomy, New Delhi, 1973, Indian J. History Sci. 9 (1) (1974) 62-76; 141.
  11. K S Shukla, The Pancasiddhantika of Varahamihira. I (errata insert), Ganita 24 (1) (1973), 59-73.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.