المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Hyper-P Algebra  
  
1257   05:43 مساءً   date: 27-12-2021
Author : Gehrke, M.; Kaiser, K.; and Insall, M.
Book or Source : Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36
Page and Part : ...


Read More
Date: 29-12-2021 963
Date: 30-12-2021 1383
Date: 14-2-2017 1557

Hyper-P Algebra

Let X be a set of urelements that contains the set N of natural numbers, and let V(X) be a superstructure whose individuals are in X. Let V(^*X) be an enlargement of V(X), and let A in V(^*X) be an algebra. Let P be a property of algebras, expressed in the first-order language for the superstructure V(X). Then A is a hyper-P-algebra provided that it satisfies ^*P in V(^*X).

For example, let P be the property of "being finite." Then P is expressible in the first-order language for V(X), since N subset= X, and a hyper-P algebra is just a hyperfinite algebra. One useful result involving hyperfinite algebras is the following: An algebra A in V(X) is locally finite if and only if it has an hyperfinite extension in V(^*X).

For another example, consider the property of being a simple group. Then a hyper-simple group in V(^*X) is just a group G in V(^*X) which has exactly two internal normal subgroups, namely the trivial subgroup and the whole group G. If an internal group is simple, then it is hyper-simple. It is not known if every hyper-simple group is simple.

For any property P, the following are equivalent:

1. P is finite generation-hereditary.

2. The following nonstandard characterization holds for P: For any set X of urelements, an algebra A in V(X) is a local P-algebra if and only if A has a hyper-P extension in V(^*X).


REFERENCES:

Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.

Insall, M. "Nonstandard Methods and Finiteness Conditions in Algebra." Zeitschr. f. Math., Logik, und Grundlagen d. Math. 37, 525-532, 1991.

Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.