المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ودت طائفة من اهل الكتاب لو يضلونكم}
2024-11-02
الرياح في الوطن العربي
2024-11-02
الرطوبة النسبية في الوطن العربي
2024-11-02
الجبال الالتوائية الحديثة
2024-11-02
الامطار في الوطن العربي
2024-11-02
الاقليم المناخي الموسمي
2024-11-02


Countably Infinite  
  
760   06:36 مساءً   date: 26-12-2021
Author : Courant, R. and Robbins, H.
Book or Source : The Denumerability of the Rational Number and the Non-Denumerability of the Continuum." §2.4.2 in What Is Mathematics?: An Elementary Approach to...
Page and Part : ...


Read More
Date: 12-1-2022 1227
Date: 31-12-2021 775
Date: 14-2-2017 6332

Countably Infinite

Any set which can be put in a one-to-one correspondence with the natural numbers (or integers) so that a prescription can be given for identifying its members one at a time is called a countably infinite (or denumerably infinite) set. Once one countable set S is given, any other set which can be put into a one-to-one correspondence with S is also countable. Countably infinite sets have cardinal number aleph-0.

Examples of countable sets include the integers, algebraic numbers, and rational numbers. Georg Cantor showed that the number of real numbers is rigorously larger than a countably infinite set, and the postulate that this number, the so-called "continuum," is equal to aleph-1 is called the continuum hypothesis. Examples of nondenumerable sets include the real, complex, irrational, and transcendental numbers.


REFERENCES:

Courant, R. and Robbins, H. "The Denumerability of the Rational Number and the Non-Denumerability of the Continuum." §2.4.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 79-83, 1996.

Jeffreys, H. and Jeffreys, B. S. Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, p. 10, 1988.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.