Read More
Date: 27-12-2021
![]()
Date: 4-1-2022
![]()
Date: 11-1-2022
![]() |
Let and
be any sets with empty intersection, and let
denote the cardinal number of a set
. Then
![]() |
(Ciesielski 1997, p. 68; Dauben 1990, p. 173; Rubin 1967, p. 274; Suppes 1972, pp. 112-113).
It is an interesting exercise to show that cardinal addition is well-defined. The main steps are to show that for any cardinal numbers and
, there exist disjoint sets
and
with cardinal numbers
and
, and to show that if
and
are disjoint and
and
disjoint with
and
then
. The second of these is easy. The first is a little tricky and requires an appeal to the axioms of set theory. Also, one needs to restrict the definition of cardinal to guarantee if
is a cardinal, then there is a set
satisfying
.
REFERENCES:
Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.
Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|