Read More
Date: 5-10-2021
![]()
Date: 31-8-2021
![]()
Date: 24-11-2021
![]() |
DNA Repair : Mismatch repair
Despite the elaborate proofreading system employed during DNA synthesis, errors (including incorrect base-pairing or insertion of one to a few extra nucleotides) can occur. In addition, DNA is constantly being subjected to environmental insults that cause the alteration or removal of nucleotide bases.
The damaging agents can be either chemicals (for example, nitrous acid, which can deaminate bases) or radiation (for example, nonionizing ultraviolet [UV] radiation, which can fuse two pyrimidines adjacent to each other in the DNA, and high-energy ionizing radiation, which can cause double-strand breaks).
Bases are also altered or lost spontaneously from mammalian DNA at a rate of many thousands per cell per day. If the damage is not repaired, a permanent change (mutation) is introduced that can result in any of a number of deleterious effects, including loss of control over the proliferation of the mutated cell, leading to cancer. Luckily, cells are remarkably efficient at repairing damage done to their DNA. Most of the repair systems involve recognition of the damage (lesion) on the DNA, removal or excision of the damage, replacement or filling the gap left by excision using the sister strand as a template for DNA synthesis, and ligation. These excision repair systems remove one to tens of nucleotides. [Note: Repair synthesis of DNA can occur outside of the S phase.]
Mismatch repair
Sometimes replication errors escape the proofreading activity during DNA synthesis, causing a mismatch of one to several bases. In E. coli, mismatch repair (MMR) is mediated by a group of proteins known as the Mut proteins (Fig. 1). Homologous proteins are present in humans. [Note: MMR occurs within minutes of replication and reduces the error rate of replication from 1 in 107 to 1 in 109 nucleotides.]
Figure 1: Methyl-directed mismatch repair in Escherichia coli. [Note: Mut S protein recognizes the mismatch and recruits Mut L. The complex activates Mut H, which cleaves the unmethylated (daughter) strand.] A = adenine; C = cytosine; G = guanine; T = thymine.
1. Mismatched strand identification: When a mismatch occurs, the Mut proteins that identify the mispaired nucleotide(s) must be able to discriminate between the correct strand and the strand with the mismatch.
In prokaryotes, discrimination is based on the degree of methylation. GATC sequences, which are found once every thousand nucleotides, are methylated on the adenine (A) residue by DNA adenine methylase (DAM). This methylation is not done immediately after synthesis, so the DNA is hemimethylated (that is, the parental strand is methylated, but the daughter strand is not). The methylated parental strand is assumed to be correct, and it is the daughter strand that gets repaired. [Note: The exact mechanism by which the daughter strand is identified in eukaryotes is not yet known, but likely involves recognition of nicks in the newly synthesized strand.]
2. Repair procedure: When the strand containing the mismatch is identified, an endonuclease nicks the strand, and the mismatched nucleotide(s) is/are removed by an exonuclease. Additional nucleotides at the 5′- and 3′-ends of the mismatch are also removed. The gap left by removal of the nucleotides is filled, using the sister strand as a template, by a DNA pol, typically DNA pol III. The 3′-hydroxyl of the newly synthesized DNA is joined to the 5′-phosphate of the remaining stretch of the original DNA strand by DNA ligase.
Mutation to the proteins involved in MMR in humans is associated with hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syndrome. Although HNPCC confers an increased risk for developing colon cancer (as well as other cancers), only about 5% of all colon cancer is the result of mutations in MMR.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|