المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الكاهن الأكبر (لآمون) في عهد رعمسيس السادس (الكاهن مري باستت)
2024-11-28
مقبرة (رعمسيس السادس)
2024-11-28
حصاد البطاطس
2024-11-28
آثار رعمسيس السادس (عمارة غرب)
2024-11-28
آثار رعمسيس في أرمنت
2024-11-28
آثار رعمسيس السادس في طيبة
2024-11-28

Conjugate addition to a carbonyl group
13-10-2020
ابن الشخباء العسقلاني
26-1-2016
ذبابة القطن البيضاء Bemisia tabaci
22-1-2016
ملاحظة العالم ابن بطوطة لظاهرة المد والجزر
2023-07-08
Vowels GOAT
2024-04-30
مراتب اليقين
19-7-2016

Pitchfork Bifurcation  
  
1300   05:44 مساءً   date: 12-10-2021
Author : Guckenheimer, J. and Holmes, P.
Book or Source : Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 6-1-2016 1173
Date: 18-12-2021 1406
Date: 17-11-2021 718

Pitchfork Bifurcation

Let f:R×R->R be a one-parameter family of C^3 maps satisfying

f(-x,mu)=-f(x,mu)

(1)

(partialf)/(partialx)|_(mu=0, x=0)=0

(2)

(partial^2f)/(partialxpartialmu)|_(mu=0, x=0)>0

(3)

(partial^3f)/(partialx^3)|_(mu=0, x=0)<0

(4)

(Rasband 1990, p. 31), although condition (1) can actually be relaxed slightly. Then there are intervals having a single stable fixed point and three fixed points (two of which are stable and one of which is unstable). This type of bifurcation is called a pitchfork bifurcation.

An example of an equation displaying a pitchfork bifurcation is

 x^.=mux-x^3

(5)

(Guckenheimer and Holmes 1997, p. 145).


REFERENCES:

Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag, pp. 145 and 149-150, 1997.

Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, p. 31, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.