Read More
Date: 6-1-2016
![]()
Date: 23-12-2021
![]()
Date: 25-9-2021
![]() |
There are several fractal curves associated with Sierpiński.
The area for the first Sierpiński curve illustrated above (Sierpiński curve 1912) is
![]() |
The curve is called the Sierpiński curve by Cundy and Rollett (1989, pp. 67-68), the Sierpiński's square snowflake by Wells (1991, p. 229), and is pictured but not named by Steinhaus (1999, pp. 102-103). The th iteration of the first Sierpiński curve is implemented in the Wolfram Language as SierpinskiCurve[n].
The limit of the second Sierpiński's curve illustrated above has area
![]() |
The Sierpiński arrowhead curve is another Sierpiński curve.
REFERENCES:
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., 1989.
Dickau, R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html.
Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, p. 34, 1989.
Sierpiński, W. "Sur une nouvelle courbe continue qui remplit toute une aire plane." Bull. l'Acad. des Sciences Cracovie A, 462-478, 1912.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.
Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 207, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 229, 1991.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|