المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

تطوّر مفهوم التاريخ والتدوين التاريخي عند المسلمين
2-5-2020
Different effects of rule ordering
29-3-2022
Rule 60
25-8-2021
Bernoulli Number
30-12-2020
الشيعة يعبدون مراقد أئمتهم ويحجون اليها بدل الكعبة ويقدمون النذر والقرابين لغير الله
18-11-2016
glide (n.)
2023-09-13

Perko Pair  
  
1324   02:43 صباحاً   date: 24-6-2021
Author : Hoste, J.; Thistlethwaite, M.; and Weeks, J.
Book or Source : "The First 1701936 Knots." Math. Intell. 20
Page and Part : ...


Read More
Date: 16-6-2021 1971
Date: 22-7-2021 1307
Date: 6-6-2021 1974

Perko Pair

PerkoPair

The Perko pair is the pair of knots 10_(161) and 10_(162) illustrated above. For many years, they were listed as separate knots in Little (1885) and all similar tables, including the pictorial enumeration of Rolfsen (1976, Appendix C). They were identified as identical by Perko (1974), who found that they are related to one another by the so-called Perko move (Perko 1974, Hoste et al. 1998). Although these knots are equivalent, their diagrams have different writhes (Hoste et al. 1998).


REFERENCES:

Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First 1701936 Knots." Math. Intell. 20, 33-48, Fall 1998.

Little, C. N. "On Knots, with a Census of Order Ten." Trans. Connecticut Acad. Sci. 18, 374-378, 1885.

Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., p. 10, 1993.

Perko, K. A. Jr. "On the Classification of Knots." Proc. Amer. Math. Soc. 45, 262-266, 1974.

Rolfsen, D. "Table of Knots and Links." Appendix C in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 280-287, 1976.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.