Read More
Date: 22-4-2021
![]()
Date: 24-2-2021
![]()
Date: 25-3-2021
![]() |
The probability density function (PDF) of a continuous distribution is defined as the derivative of the (cumulative) distribution function
,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
so
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
A probability function satisfies
![]() |
(6) |
and is constrained by the normalization condition,
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Special cases are
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
To find the probability function in a set of transformed variables, find the Jacobian. For example, If , then
![]() |
(14) |
so
![]() |
(15) |
Similarly, if and
, then
![]() |
(16) |
Given probability functions
,
, ...,
, the sum distribution
has probability function
![]() |
(17) |
where is a delta function. Similarly, the probability function for the distribution of
is given by
![]() |
(18) |
The difference distribution has probability function
![]() |
(19) |
and the ratio distribution has probability function
![]() |
(20) |
Given the moments of a distribution (,
, and the gamma statistics
), the asymptotic probability function is given by
![]() |
(21) |
where
![]() |
(22) |
is the normal distribution, and
![]() |
(23) |
for (with
cumulants and
the standard deviation; Abramowitz and Stegun 1972, p. 935).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Probability Functions." Ch. 26 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 925-964, 1972.
Evans, M.; Hastings, N.; and Peacock, B. "Probability Density Function and Probability Function." §2.4 in Statistical Distributions, 3rd ed. New York: Wiley, pp. 9-11, 2000.
McLaughlin, M. "Common Probability Distributions." http://www.geocities.com/~mikemclaughlin/math_stat/Dists/Compendium.html.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, p. 94, 1984.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|