Read More
Date: 9-8-2020
![]()
Date: 2-2-2016
![]()
Date: 26-6-2020
![]() |
Given an -ball
of radius
, find the distribution of the lengths
of the lines determined by two points chosen at random within the ball. The probability distribution of lengths is given by
![]() |
(1) |
where
![]() |
(2) |
and
![]() |
(3) |
is a regularized beta function, with is an incomplete beta function and
is a beta function (Tu and Fischbach 2000).
The first few are
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
The mean line segment lengths for and the first few dimensions
are given by
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
(OEIS A093530 and A093531 and OEIS A093532 and A093533), corresponding to line line picking, disk line picking, (3-D) ball line picking, and so on.
REFERENCES:
Kendall, M. G. and Moran, P. A. P. Geometrical Probability. New York: Hafner, 1963.
Santaló, L. A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976.
Sloane, N. J. A. Sequences A093530, A093531, A093532, and A093533 in "The On-Line Encyclopedia of Integer Sequences."
Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an -Dimensional Sphere and Its Applications" 17 Apr 2000. http://arxiv.org/abs/math-ph/0004021.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|