Read More
Date: 22-5-2019
1082
Date: 7-8-2019
1127
Date: 24-9-2018
1816
|
In 1757, V. Riccati first recorded the generalizations of the hyperbolic functions defined by
(1) |
for , ..., , where is complex, with the value at defined by
(2) |
This is called the -hyperbolic function of order of the th kind. The functions satisfy
(3) |
where
(4) |
In addition,
(5) |
The functions give a generalized Euler formula
(6) |
Since there are th roots of , this gives a system of linear equations. Solving for gives
(7) |
where
(8) |
is a primitive root of unity.
The Laplace transform is
(9) |
The generalized hyperbolic function is also related to the Mittag-Leffler function by
(10) |
|||
(11) |
The values and give the exponential and circular/hyperbolic functions (depending on the sign of ), respectively.
(12) |
|||
(13) |
In particular
(14) |
|||
(15) |
|||
(16) |
For , the first few functions are
(17) |
|||
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
|||
(25) |
|||
(26) |
REFERENCES:
Kaufman, H. "A Biographical Note on the Higher Sine Functions." Scripta Math. 28, 29-36, 1967.
Muldoon, M. E. and Ungar, A. A. "Beyond Sin and Cos." Math. Mag. 69, 3-14, 1996.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Ungar, A. "Generalized Hyperbolic Functions." Amer. Math. Monthly 89, 688-691, 1982.
Ungar, A. "Higher Order Alpha-Hyperbolic Functions." Indian J. Pure. Appl. Math. 15, 301-304, 1984.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|