المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01


Ker  
  
2004   02:00 مساءً   date: 25-3-2019
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 21-7-2019 1454
Date: 24-6-2019 1821
Date: 23-8-2018 5864

Ker

 

The symbol ker has at least two different meanings in mathematics. It can refer to a special function related to Bessel functions, or (written either with a capital or lower-case "K"), it can denote a kernel.

Ker5

The ker_nu(z) function is defined as the real part of

 e^(-nupii/2)K_nu(ze^(pii/4))=ker_nu(z)+ikei_nu(z),

(1)

where K_nu(z) is a modified Bessel function of the second kind. Therefore

 ker_nu(z)=R[e^(-nupii/2)K_nu(ze^(pii/4))],

(2)

where R[z] is the real part.

It is implemented in the Wolfram Language as KelvinKer[nuz].

ker_n(z) has a complicated series given by Abramowitz and Stegun (1972, p. 379).

KerKerContours

850

The special case nu=0 is commonly denoted ker_0(z)=ker(z) and has the plot shown above. ker(z) has the series expansion

 ker(x)=-ln(1/2x)ber(x)+1/4pibei(x) 
 +sum_(k=0)^infty(-1)^k(psi(2k+1))/([(2k)!]^2)(1/4x^2)^(2k),

(3)

where psi(z) is the digamma function (Abramowitz and Stegun 1972, p. 380).

"ker" is also an abbreviation for "group kernel" of a group homomorphism.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.

Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Kelvin Functions ber_nu(x)beinu(x)ker_nu(x) and kei_nu(x)." §1.7 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 29-30, 1990.a




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.