Read More
Date: 13-8-2018
1431
Date: 13-6-2019
2641
Date: 25-9-2019
1494
|
The hyperbolic cotangent is defined as
(1) |
The notation is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram Language as Coth[z].
The hyperbolic cotangent satisfies the identity
(2) |
where is the hyperbolic cosecant.
It has a unique real fixed point where
(3) |
at (OEIS A085984), which is related to the Laplace limit in the solution of Kepler's equation.
The derivative is given by
(4) |
where is the hyperbolic cosecant, and the indefinite integral by
(5) |
where is a constant of integration.
The Laurent series of is given by
(6) |
|||
(7) |
(OEIS A002431 and A036278), where is a Bernoulli number and is a Bernoulli polynomial. An asymptotic series about infinity on the real line is given by
(8) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jeffrey, A. "Hyperbolic Identities." §2.5 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 117-122, 2000.
Sloane, N. J. A. Sequences A002431/M0124 and A036278 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Hyperbolic Tangent and Cotangent Functions." Ch. 30 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 279-284, 1987.
Zwillinger, D. (Ed.). "Hyperbolic Functions." §6.7 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 476-481 1995.
Sloane, N. J. A. Sequences A010050 and A085984 in "The On-Line Encyclopedia of Integer Sequences."
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
المجمع العلميّ يُواصل عقد جلسات تعليميّة في فنون الإقراء لطلبة العلوم الدينيّة في النجف الأشرف
|
|
|