Read More
Date: 16-5-2018
![]()
Date: 22-9-2019
![]()
Date: 26-7-2019
![]() |
Picking two independent sets of points and
from a unit uniform distribution and placing them at coordinates
gives points uniformly distributed over the unit square.
The distribution of distances from a randomly selected point in the unit square to its center is illustrated above.
The expected distance to the square's center is
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
(Finch 2003, p. 479; OEIS A103712), where is the universal parabolic constant. The expected distance to a fixed vertex is given by
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
which is exactly twice .
The expected distances from the closest and farthest vertices are given by
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
Pick points at randomly in a unit square and take the convex hull
. Let
be the expected area of
,
the expected perimeter, and
the expected number of vertices of
. Then
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
(OEIS A096428 and A096429), where is the multiplicative inverse of Gauss's constant,
is the gamma function, and
is the Euler-Mascheroni constant (Rényi and Sulanke 1963, 1964; Finch 2003, pp. 480-481).
In addition,
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
where
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
and
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
(Groeneboom 1988; Cabo and Groeneboom 1994; Keane 2000; Finch 2003, p. 481).
REFERENCES:
Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "Box Integrals." Preprint. Apr. 3, 2006.
Cabo, A. J. and Groeneboom, P. "Limit Theorems for Functionals of Convex Hulls." Probab. Th. Related Fields 100, 31-55, 1994.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 480-481, 2003.
Groeneboom, P. "Limit Theorems for Complex Hulls." Probab. Th. Related Fields 79, 327-368, 1988.
Heuter, I. "Limit Theorems for the Convex Hull of Random Points in Higher Dimensions." Trans. Amer. Math. Soc. 351, 4337-4363, 1999.
Keane, J. "Convex Hull Integrals and the 'Ubiquitous Constant.' " Unpublished note, 2000.
Rényi, A. and Sulanke, R. "Über die konvexe Hülle von zufällig gewählten Punkten, I." Z. Wahrscheinlichkeits 2, 75-84, 1963.
Rényi, A. and Sulanke, R. "Über die konvexe Hülle von zufällig gewählten Punkten, II." Z. Wahrscheinlichkeits 3, 138-147, 1964.
Sloane, N. J. A. Sequences A096428, A096429, and A103712 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|