Read More
Date: 26-12-2018
![]()
Date: 26-12-2018
![]()
Date: 3-7-2018
![]() |
If one solution () to a second-order ordinary differential equation
![]() |
(1) |
is known, the other () may be found using the so-called reduction of order method. From Abel's differential equation identity
![]() |
(2) |
where
![]() |
(3) |
is the Wronskian.
Integrating gives
![]() |
(4) |
![]() |
(5) |
and solving for gives
![]() |
(6) |
But
![]() |
(7) |
so combining (◇) and (◇) yields
![]() |
(8) |
![]() |
(9) |
Disregarding , since it is simply a multiplicative constant, and the constants
and
, which will contribute a solution which is not linearly independent of
, leaves
![]() |
(10) |
In the special case , this simplifies to
![]() |
(11) |
If both general solutions to a second-order nonhomogeneous differential equation are known, variation of parameters can be used to find the particular solution.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|