المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الحلم
22-7-2016
الحالات المرضية البكتيرية : الحالة السابعة والثلاثون
6-9-2016
القول بالجبر أو التفويض من الغلو
5-1-2019
نظرة فلاسفة اليونان للصلة بين اللفظ والدلالة
21-4-2018
حافظة armature
23-11-2017
تـنفيـذ عمليـات التدقيق الإداري (التـوجـيـه)
2023-03-30

Borel Set  
  
1595   06:22 مساءً   date: 15-7-2021
Author : Croft, H. T.; Falconer, K. J.; and Guy, R. K
Book or Source : Unsolved Problems in Geometry. New York: Springer-Verlag
Page and Part : p. 3


Read More
Date: 6-5-2021 1335
Date: 24-6-2021 1257
Date: 6-6-2021 2111

Borel Set

A Borel set is an element of a Borel sigma-algebra. Roughly speaking, Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and intersections. Formally, the class B of Borel sets in Euclidean R^n is the smallest collection of sets that includes the open and closed sets such that if EE_1E_2, ... are in B, then so are  union _(i=1)^inftyE_i intersection _(i=1)^inftyE_i, and R^nE, where FE is a set difference (Croft et al. 1991).

The set of rational numbers is a Borel set, as is the Cantor set.


REFERENCES:

Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 3, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.