Read More
Date: 12-2-2020
![]()
Date: 8-10-2020
![]()
Date: 10-9-2020
![]() |
An infinite sequence of positive integers satisfying
![]() |
(1) |
is an -sequence if no
is the sum of two or more distinct earlier terms (Guy 1994). Such sequences are sometimes also known as sum-free sets.
Erdős (1962) proved
![]() |
(2) |
Any -sequence satisfies the chi inequality (Levine and O'Sullivan 1977), which gives
. Abbott (1987) and Zhang (1992) have given a bound from below, so the best result to date is
![]() |
(3) |
Levine and O'Sullivan (1977) conjectured that the sum of reciprocals of an -sequence satisfies
![]() |
(4) |
where are given by the Levine-O'Sullivan greedy algorithm. However, summing the first
terms of the Levine-O'Sullivan sequence already gives 3.0254....
REFERENCES:
Abbott, H. L. "On Sum-Free Sequences." Acta Arith. 48, 93-96, 1987.
Erdős, P. "Remarks on Number Theory III. Some Problems in Additive Number Theory." Mat. Lapok 13, 28-38, 1962.
Finch, S. R. "Erdős' Reciprocal Sum Constants." §2.20 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 163-166, 2003.
Guy, R. K. "-Sequences." §E28 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 228-229, 1994.
Levine, E. and O'Sullivan, J. "An Upper Estimate for the Reciprocal Sum of a Sum-Free Sequence." Acta Arith. 34, 9-24, 1977.
Zhang, Z. X. "A Sum-Free Sequence with Larger Reciprocal Sum." Unpublished manuscript, 1992.
|
|
فواكه قد تغني عن مضادات الحيوية وتظهر إمكانات غير متوقعة في مكافحة السرطان
|
|
|
|
|
استنساخ ذئاب عملاقة وشرسة "انقرضت منذ آلاف السنين"
|
|
|
|
|
أصواتٌ قرآنية واعدة .. أكثر من 80 برعماً يشارك في المحفل القرآني الرمضاني بالصحن الحيدري الشريف
|
|
|