المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24


Mertens Conjecture  
  
1222   04:08 مساءً   date: 5-8-2020
Author : Anderson, R. J.
Book or Source : "On the Mertens Conjecture for Cusp Forms." Mathematika 26
Page and Part : ...


Read More
Date: 3-10-2020 509
Date: 5-12-2020 679
Date: 10-10-2020 700

Mertens Conjecture


 MertensConjecture

Given the Mertens function defined by

 M(n)=sum_(k=1)^nmu(k),

(1)

where mu(n) is the Möbius function, Stieltjes claimed in an 1885 letter to Hermite that M(x)x^(-1/2) stays within two fixed bounds, which he suggested could probably be taken to be +/-1 (Havil 2003, p. 208). In the same year, Stieltjes (1885) claimed that he had a proof of the general result. However, it seems likely that Stieltjes was mistaken in this claim (Derbyshire 2004, pp. 160-161). Mertens (1897) subsequently published a paper opining based on a calculation of M(10^4) that Stieltjes' claim

 |M(x)|<x^(1/2)

(2)

for x>1 was "very probable."

The Mertens conjecture has important implications, since the truth of any equality of the form

 |M(n)|<=cn^(1/2)

(3)

for any fixed c (the form of the Mertens conjecture with c=1) would imply the Riemann hypothesis. In fact, the statement

 M(n)=O(n^(1/2+epsilon))

(4)

for any epsilon<1/2 is equivalent to the Riemann hypothesis (Derbyshire 2004, p. 251).

Mertens (1897) verified the conjecture for n<10000, and this was subsequently extended to n<500000 by von Sterneck (1912; Deléglise and Rivat 1996). The Mertens conjecture was proved false by Odlyzko and te Riele (1985). Their proof is indirect and does not produce a specific counterexample, but it does show that

lim sup_(n->infty)M(n)n^(-1/2) > 1.06

(5)

lim inf_(n->infty)M(n)n^(-1/2) < -1.009

(6)

(Havil 2003, p. 209). Odlyzko and te Riele (1985) believe that there are no counterexamples to the Mertens conjecture for n<=10^(20), or even 10^(30), calling Stieltjes' supposed proof into very strong question (Derbyshire 2004, p. 161).

Pintz (1987) subsequently showed that at least one counterexample to the conjecture occurs for n<exp(3.21×10^(64)) (Havil 2003, p. 209), using a weighted integral average of M(x)/x and a discrete sum involving nontrivial zeros of the Riemann zeta function. The first value of n for which |M(n)|>sqrt(n) is still unknown, but it is known to exceed 10^(14) (te Riele 2006), improving the previous best results of 10^(13) (Lioen and van de Lune 1994) and 10^(12) (Dress 1993; Deléglise and Rivat 1996).

It is still not known if

 lim sup_(n->infty)|M(n)|n^(-1/2)=infty,

(7)

although it seems very probable (Odlyzko and te Riele 1985).


REFERENCES:

Anderson, R. J. "On the Mertens Conjecture for Cusp Forms." Mathematika 26, 236-249, 1979.

Anderson, R. J. "Corrigendum: 'On the Mertens Conjecture for Cusp Forms.' " Mathematika 27, 261, 1980.

Deléglise, M. and Rivat, J. "Computing the Summation of the Möbius Function." Experiment. Math. 5, 291-295, 1996.

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.

Devlin, K. "The Mertens Conjecture." Irish Math. Soc. Bull. 17, 29-43, 1986.

Dress, F. "Fonction sommatoire de la fonction de Möbius; 1. Majorations expérimentales." Experiment. Math. 2, 93-102, 1993.

Grupp, F. "On the Mertens Conjecture for Cusp Forms." Mathematika 29, 213-226, 1982.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 64, 1999.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Jurkat, W. and Peyerimhoff, A. "A Constructive Approach to Kronecker Approximation and Its Application to the Mertens Conjecture." J. reine angew. Math. 286/287, 322-340, 1976.

Lehman, R. S. "On Liouville's Functions." Math. Comput. 14, 311-320, 1960.

Lioen, W. M. and van de Lune, J. "Systematic Computations on Mertens' Conjecture and Dirichlet's Divisor Problem by Vectorized Sieving." In From Universal Morphisms to Megabytes: A Baayen Space Odyssey. On the Occasion of the Retirement of P. C. Baayen (Ed. K. Apt, L. Schrijver, and N. Temme). Amsterdam, Netherlands: Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, pp. 421-432, 1994. https://walter.lioen.com/papers/LL94.pdf.

Mertens, F. "Über eine zahlentheoretische Funktion." Sitzungsber. Akad. Wiss. Wien IIa 106, 761-830, 1897.

Odlyzko, A. M. and te Riele, H. J. J. "Disproof of the Mertens Conjecture." J. reine angew. Math. 357, 138-160, 1985.

Pintz, J. "An Effective Disproof of the Mertens Conjecture." Astérique 147-148, 325-333 and 346, 1987.

Stieltjes, T. C. R. A. S. 1885.

te Riele, H. J. J. "Some Historical and Other Notes About the Mertens Conjecture and Its Recent Disproof." Nieuw Arch. Wisk. 3, 237-243, 1985.

te Riele, H. R. "The Mertens Conjecture Revisited." 7th Algorithmic Number Theory Symposium. Technische Universität Berlin, 23-28 July 2006. https://www.math.tu-berlin.de/~kant/ants/Proceedings/te_riele/te_riele_talk.pdf.

von Sterneck, R. D. "Die zahlentheoretische Funktion sigma(n) bis zur Grenze 500000." Akad. Wiss. Wien Math.-Natur. Kl. Sitzungsber. IIa 121, 1083-1096, 1912.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.