المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مقدمة لحروب (آشور بنيبال)
2025-04-04
عصر «آشور بنيبال» 669–626 ق.م
2025-04-04
حروب «إسرحدون» التي شنها على بلاد العرب
2025-04-04
أعمال (سنخرب) الداخلية
2025-04-04
خاتمة حياة سرجون
2025-04-04
نيماتودا حوصلات فول الصويا Heterodera glycines
2025-04-04

أسباب  الاصطفاء العامة
2023-08-12
جمع النحل للماء
14-7-2020
استكشاف كوكب زحل
20-11-2016
الهجاء السياسي
22-03-2015
ميثاق الشرف الإذاعي وعلاقته بالاستراتيجية الإعلامية
17-6-2019
Hints of the first language
2024-01-23

Landau Constant  
  
819   03:48 مساءً   date: 2-3-2020
Author : Finch, S. R.
Book or Source : "Bloch-Landau Constants." §7.1 in Mathematical Constants. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 23-9-2020 1042
Date: 25-10-2020 900
Date: 13-10-2020 1131

Landau Constant

 

Let F be the set of complex analytic functions f defined on an open region containing the closure of the unit disk D={z:|z|<1} satisfying f(0)=0 and df/dz(0)=1. For each f in F, let l(f) be the supremum of all numbers r such that f(D) contains a disk of radius r. Then

 L=inf{l(f):f in F}.

This constant is called the Landau constant, or the Bloch-Landau constant. Robinson (1938, unpublished) and Rademacher (1943) derived the bounds

 1/2<L<=(Gamma(1/3)Gamma(5/6))/(Gamma(1/6))=0.5432589...

(OEIS A081760), where Gamma(z) is the gamma function, and conjectured that the second inequality is actually an equality.


REFERENCES:

Finch, S. R. "Bloch-Landau Constants." §7.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 456-459, 2003.

Rademacher, H. "On the Bloch-Landau Constant." Amer. J. Math. 65, 387-390, 1943.

Sloane, N. J. A. Sequence A081760 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.