1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : الكهرومغناطيسية :

The Iron Core Inductor

المؤلف:  E. R. Huggins

المصدر:  Physics 2000

الجزء والصفحة:  792

24-12-2020

1814

The Iron Core Inductor

When the external field is less than 2 gauss in Figure (1), we have a more or less linear relationship shown by the dotted line between the external field and the field in the iron. In this region of the curve, for Bext < 2 gauss, the iron is essentially acting as a magnetic field amplifier. For this sample, a 2 gauss external field produces a 50,000 gauss magnetic field in the iron, an amplification by a factor of 25,000.
If we amplify the magnetic field in our solenoid 25,000 times, we are also amplifying the magnetic flux ΦB by the same factor. If we have a varying current in the solenoid, but keep Bext under 2 gauss, we will get a varying magnetic field in the iron and a varying magnetic flux ΦB that is roughly proportional to the current i in the solenoid. The difference that the iron makes is that the flux ΦB, and the rate of change of flux dΦB/dt will be 25,000 times larger. And so will the induced voltage in the turns of the solenoid. This means that the inductance of the solenoid is also increased by 25,000 times. If we inserted an iron ring into our air core solenoid, and the iron had the same magnetic properties as the iron sample studied in Figure (1), the inductance of our toroidal solenoid would increase 25,000 times from 1.8 × 10-4 henry up to about 4 henrys.

Figure 1: Example of a magnetization curve for magnetically soft iron. The impressive feature is that an external field of only a few gauss can produce fields in excess of xxxxx gauss inside the iron.

We can easily get large inductances from iron core inductors, but there are certain disadvantages. The curve in Figure (1) is not strictly linear, therefore the inductance has some dependence on the strength of the current in the coil. When we use an AC current in the solenoid, the iron atoms have to flip back and forth to keep their magnetic moments aligned with the AC external field. There is always some energy dissipated in the process and the iron can get hot. And if we try to go to too high a frequency, the iron atoms may not be able to flip fast enough, the magnetic field in the iron will no longer be able to follow the external field, and the amplification is lost. None of these problems is present with a air core inductor that has no iron.

EN

تصفح الموقع بالشكل العمودي