Read More
Date: 16-7-2021
![]()
Date: 20-7-2021
![]()
Date: 24-7-2021
![]() |
Definition: Let X and Y be topological spaces. A function h: X → Y is said to be a homeomorphism if and only if the following conditions are satisfied:
• the function h: X → Y is both injective and surjective (so that the function h: X → Y has a well-defined inverse h−1: Y → X),
• the function h: X → Y and its inverse h−1: Y → X are both continuous.
Two topological spaces X and Y are said to be homeomorphic if there exists a homeomorphism h: X → Y from X to Y .
If h: X → Y is a homeomorphism between topological spaces X and Y then h induces a one-to-one correspondence between the open sets of X and the open sets of Y . Thus the topological spaces X and Y can be regarded as being identical as topological spaces.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|