 
					
					
						Given a Gaussian					
				 
				
					
						 المؤلف:  
						Sidney B. Cahn, Gerald D. Mahan And Boris E. Nadgorny
						 المؤلف:  
						Sidney B. Cahn, Gerald D. Mahan And Boris E. Nadgorny 					
					
						 المصدر:  
						A GUIDE TO PHYSICS PROBLEMS
						 المصدر:  
						A GUIDE TO PHYSICS PROBLEMS 					
					
						 الجزء والصفحة:  
						part 2 , p 56
						 الجزء والصفحة:  
						part 2 , p 56					
					
					
						 14-8-2016
						14-8-2016
					
					
						 1321
						1321					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Given a Gaussian 
A particle of mass m is coupled to a simple harmonic oscillator in one dimension. The oscillator has frequency ω and distance constant x20 = h/mω. At time t = 0 the particle’s wave function ψ (x, t) is given by
 (i)
(i)
The constant σ is unrelated to any other parameters. What is the probability that a measurement of energy at t = 0 finds the value of E0 = hω/2?
SOLUTION
Denote the eigenfunctions of the harmonic oscillator as ѱn(x) with eigenvalue En. They are a complete set of states, and we can expand any function in this set. In particular, we expand our function Ψ(x, 0) in terms of coefficients an:
 (1)
(1)
 (2)
(2)
The expectation value of the energy is the integral of the Hamiltonian H for the harmonic oscillator:
 (3)
(3)
where we used the fact that Hѱn = En ѱn. The probability Pn of energy En is |an|2. So the probability of E0 is given by
 (4)
(4)
where
 (5)
(5)
and finally
 (6)
(6)
It is easy to show that this quantity is less than unity for any value of σ ≠ x0 and is unity if σ = x0.
				
				
					
					 الاكثر قراءة في  مواضيع اخرى
					 الاكثر قراءة في  مواضيع اخرى					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة