Read More
Date: 1-8-2016
1186
Date: 21-8-2016
867
Date: 9-8-2016
1033
|
Lifetime of Classical Atom
At a time t = 0, the electron orbits a classical hydrogen atom at a radius a0 equal to the first Bohr radius. Derive an expression for the time it takes for the radius to decrease to zero due to radiation. Assume that the energy loss per revolution is small compared to the total energy of the atom.
SOLUTION
If the energy loss per revolution is small compared to the total energy of the electron in the atom, we can write
(1)
where ω is the acceleration of the electron and Prad is the total radiated power. Using our assumption, we can approximate the orbit of the electron (which is a spiral) by a circle for each revolution of radius r = r(t). The acceleration is due to the Coulomb force
(2)
On the other hand, using |ε| = |U|/2 (U is the potential energy of a particle moving in a circle in a 1/r2 field) we have
(3)
Substituting (2) and (3) into (1) gives
(4)
or
(5)
Integrating (5) yields
So
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
المجمع العلميّ يُواصل عقد جلسات تعليميّة في فنون الإقراء لطلبة العلوم الدينيّة في النجف الأشرف
|
|
|