تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Charged Conducting Sphere in Constant Electric Field
المؤلف:
Sidney B. Cahn Boris E. Nadgorny
المصدر:
A GUIDE TO PHYSICS PROBLEMS
الجزء والصفحة:
part 1 , p 44
7-8-2016
1631
Charged Conducting Sphere in Constant Electric Field
A conducting sphere of radius on whose surface resides a total charge Q is placed in a uniform electric field E0 (see Figure 1.1). Find the potential
Figure 1.1
at all points in space exterior to the sphere. What is the surface charge density?
SOLUTION
Look for a solution of the form
where ϕ0 = -E0 · r is the potential due to the external field and ϕ1 is the change in the potential due to the presence of the sphere. The constant vector E0 defines a preferred direction, and therefore the potential ϕ1 may depend only on this vector. Then, the only solution of Laplace’s equation which goes to zero at infinity is a dipole potential
(1)
where A is some constant (alternatively, we may write the solution in terms of Legendre polynomials and obtain the same answer from the boundary conditions). So
(2)
On the surface of the sphere, ϕ is constant:
(3)
where θ is the angle between E0 and r (see Figure 1.2). From (3), we find that A = a3, and finally
(4)
The surface charge density
Figure 1.2
الاكثر قراءة في مواضيع اخرى
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
