Read More
Date: 26-8-2016
1483
Date: 13-7-2016
915
Date: 22-8-2016
1136
|
Period as Function of Energy
A particle of mass m moves in a one-dimensional potential U(x) = A |x|n where A is a constant. Find the dependence of the period τ on the energy E in terms of n.
SOLUTION
Energy is conserved for a position dependent potential, so we may write E = (1/2) mẋ2 + A |x|n. The time for a particle to travel between two turning points of its motion τ1 and τ2 (where its kinetic energy is zero) is given by
(1)
Let u = (A/E)1/n x. (1) then becomes
(2)
The period T is twice the time to go between points 1 and 2, T = 2τ12. So for the energy dependence of the period, we have
(3)
For a harmonic oscillator n = 2, and independent of E, as (3) confirms
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|