المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الصناعات الكيمياوية Chemical Ind
2024-10-29
تحدي القرآن والأمر بتكليف مالا يطاق
26/12/2022
Harry Bateman
24-5-2017
الاتفاق الإجرائي على استبعاد القانون الواجب التطبيق
4-2-2022
رفيق السوء وسوء السمعة
2023-08-23
ما هي العلاقات العامة؟
2024-08-25

​Spanning Trees  
  
1404   01:10 صباحاً   date: 12-2-2016
Author : W.D. Wallis
Book or Source : Mathematics in the Real World
Page and Part : 115-116


Read More
Date: 28-7-2016 1264
Date: 21-4-2022 2054
Date: 10-3-2022 1561

We shall define a spanning subgraph of a graph G to be a subgraph that contains every vertex of G. A spanning tree in a graph is a spanning subgraph that is a tree when considered as a graph in its own right.

It is easy to show that any connected graph G has a spanning tree. If G is a tree,  then the whole of G is itself the spanning tree. Otherwise G must contain a cycle;  delete one edge from the cycle. The resulting graph is still a connected subgraph of G; and, as no vertex has been deleted, it is a spanning subgraph. Find a cycle in this new graph and delete it; repeat the process. Eventually the remaining graph will contain no cycle, so it is a tree. So when the process stops, we have found a spanning tree.

A given graph might have many different spanning trees. There are algorithms to find all spanning trees in a graph. But fortunately a complete search for spanning trees can be done quite quickly in a small graph. We’ll look at an example.

Sample Problem 1.1 Find all spanning trees in the following graph.

Solution. The graph contains two cycles, ab f e and cdhg. In order to construct a tree, it is necessary to delete at least one edge from each of these cycles. As the original graph contains eight vertices, any spanning tree will have eight vertices.

From Theorem 1in(Trees), these trees will have seven edges. So exactly one edge must be removed from each cycle, or there will be too few edges. (This argument would need some modification if an edge that was common to both cycles were deleted,  but fortunately the graph contains no such edge.) So there are 16 spanning trees,  as follows:

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.