المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

رتبة ذباب مايو Ephemeroptera
19-5-2016
استحالة ترجّح المساوي والمرجوح وترجيحهما (1)
1-07-2015
Fixed Burnable Poisons
18-4-2017
انتخاب عمر لأعضاء الشورى
10-4-2016
مقدمة الواجب مسألة عقلية محضة
3-8-2016
أوصاف المستحقين
5-10-2018

Icosahedral Graph  
  
2047   03:55 مساءً   date: 22-3-2022
Author : Bondy, J. A. and Murty, U. S. R
Book or Source : Graph Theory with Applications. New York: North Holland,
Page and Part : ...


Read More
Date: 28-3-2022 1208
Date: 24-4-2022 1423
Date: 23-3-2022 1512

Icosahedral Graph

IcosahedralGraphEmbeddings

The icosahedral graph is the Platonic graph whose nodes have the connectivity of the icosahedron, illustrated above in a number of embeddings. The icosahedral graph has 12 vertices and 30 edges.

IcosahedralGraphLCF

Since the icosahedral graph is regular and Hamiltonian, it has a generalized LCF notation. In fact, there are two distinct generalized LCF notations of order 6--[(-4,-3,4),(-2,2,3)]^6 and [(-4,3,4),(-3,-2,2)]^6--8 of order 2, and 17 of order 1, illustrated above.

It is implemented in the Wolfram Language as GraphData["IcosahedralGraph"].

It is a distance-regular graph with intersection array {5,2,1;1,2,5}, and therefore also a Taylor graph. It is also distance-transitive.

IcosahedralGraphGracefulLabeling

The icosahedral graph is graceful (Gardner 1983, pp. 158 and 163-164; Gallian 2018, p. 35), as shown by the labeling above which gives absolute differences of adjacent labeled vertices consisting of precisely the numbers 0-30 inclusive. There are 24 fundamentally different graceful labelings (i.e., graceful labelings that are distinct modulo subtractive complementation and the symmetries of the graph), giving a total of 5760 graceful labelings in all (Bert Dobbelaere, pers. comm., Oct. 2, 2020). The computation by Ashkok Kumar Chandra that determined there to be 5 fundmanetally different solutions, as reported by Gardner (1983, pp. 163-164), therefore seems to be in error.

IcosahedralGraphMinimalIntegralDrawings

There are two minimal integral embeddings of the icosahedral graph, illustrated above, all with maximum edge length of 8 (Harborth and Möller 1994).

IcosahedralGraphMinimalPlanarIntegralDrawing

The minimal planar integral embedding of the icosahedral graph has maximum edge length of 159 (Harborth et al. 1987).

The skeletons of the great dodecahedron, great icosahedron, and small stellated dodecahedron are all isomorphic to the icosahedral graph.

The chromatic polynomial of the icosahedral graph is

 pi_G(z)=z(z-1)(z-2)(z-3)(z^8-24z^7+260z^6-1670z^5+6999z^4-19698z^3+36408z^2-40240z+20170),

and the chromatic number is 4.

Its graph spectrum is (-sqrt(5))^3(-1)^5(sqrt(5))^35^1 (Buekenhout and Parker 1998; Cvetkovic et al. 1998, p. 310). Its automorphism group is of order |Aut(G)|=120 (Buekenhout and Parker 1998).

IcosahedralGraphMatrices

The plots above show the adjacency, incidence, and graph distance matrices for the icosahedral graph.

The adjacency matrix for the icosahedral graph with J_(12)-I_(12) appended, where J_(12) is a unit matrix and I_(12) is an identity matrix, is a generator for the Golay code.

The following table summarizes properties of the icosahedral graph.

property value
automorphism group order 120
characteristic polynomial (x-5)(x+1)^5(x^2-5)^3
chromatic number 4
claw-free yes
clique number 3
determined by spectrum ?
diameter 3
distance-regular graph yes
dual graph name dodecahedral graph
edge chromatic number 5
edge connectivity 5
edge count 30
Eulerian no
girth 3
Hamiltonian yes
Hamiltonian cycle count 2560
Hamiltonian path count ?
integral graph no
independence number 3
line graph no
perfect matching graph no
planar yes
polyhedral graph yes
polyhedron embedding names great dodecahedron, great icosahedron, icosahedron, Jessen's orthogonal icosahedron, small stellated dodecahedron
radius 3
regular yes
spectrum (-sqrt(5))^3(-1)^5(sqrt(5))^35^1
square-free no
traceable yes
triangle-free no
vertex connectivity 5
vertex count 12
weakly regular parameters (12,(5),(2),(0,2))

REFERENCES

Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 234, 1976.

Buekenhout, F. and Parker, M. "The Number of Nets of the Regular Convex Polytopes in Dimension <=4." Disc. Math. 186, 69-94, 1998.

Cvetković, D. M.; Doob, M.; and Sachs, H. Spectra of Graphs: Theory and Applications, 3rd rev. enl. ed. New York: Wiley, 1998.

DistanceRegular.org. "Icosahedron." http://www.distanceregular.org/graphs/icosahedron.html.Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018.

 https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.

Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, p. 127, 2001.

Harborth, H. and Möller, M. "Minimum Integral Drawings of the Platonic Graphs." Math. Mag. 67, 355-358, 1994.

Harborth, H.; Kemnitz, A.; Möller, M.; and Süssenbach, A. "Ganzzahlige planare Darstellungen der platonischen Körper." Elem. Math. 42, 118-122, 1987.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, p. 266, 1998.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.