المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

إعتقادنا في العرش (*)
23-1-2017
الصدق والنجاة
30-1-2017
ما يكره للمجنب
2024-10-15
جزاء الإخلال بالشروط الشكلية للكمبيالة.
27-4-2017
بعض الأساليب المستخدمة في دراسة العمليات الكيميائية الحيوية
28-3-2021
أسلحة جديدة لضرب النواة
30-1-2023

Formal Language  
  
894   11:49 صباحاً   date: 24-1-2022
Author : Aho, A. V. and Ullman J. D
Book or Source : Theory of Parsing, Translation and Compiling, Vol. 1. Englewood Cliffs, NJ: Prentice Hall, 1972.
Page and Part : ...


Read More
Date: 9-2-2022 542
Date: 20-1-2022 638
Date: 8-2-2022 716

Formal Language

 

In mathematics, a formal language is normally defined by an alphabet and formation rules. The alphabet of a formal language is a set of symbols on which this language is built. Some of the symbols in an alphabet may have a special meaning. The formation rules specify which strings of symbols count as well-formed. The well-formed strings of symbols are also called words, expressions, formulas, or terms. The formation rules are usually recursive. Some rules postulate that such and such expressions belong to the language in question. Some other rules establish how to build well-formed expressions from other expressions belonging to the language. It is assumed that nothing else is a well-formed expression.

For example, the language of propositional calculus could be defined as follows. The alphabet of this language is comprised of English letters with optional indexes and the following special symbols: ¬ (NOT),  ^  (AND),  v  (OR), => (implies), and () (grouping). The formation rules are then that every English letter and every letter with an index is a formula, and if A and B are formulas, then so are ¬AA v BA ^ BA=>B, and (A).

Formation rules are sufficient for defining simple languages. More syntactically complex languages are defined by means of grammars or regular expressions.

The formation rules of propositional calculus and most other formation rules can be straightforwardly transformed into grammar productions. For example, the formation rule A ^ B becomes the production S->S ^ S, where S is the start symbol.


REFERENCES

Aho, A. V. and Ullman J. D. Theory of Parsing, Translation and Compiling, Vol. 1. Englewood Cliffs, NJ: Prentice Hall, 1972.

Aho, A. V. and Ullman J. D. Theory of Parsing, Translation and Compiling, Vol. 2. Englewood Cliffs, NJ: Prentice Hall, 1972.

Kleene, S. C. Introduction to Metamathematics. Princeton, NJ: Van Nostrand, p. 39, 1964.

Wolfram, S. "Computation Theory of Cellular Automata." Comm. Math. Phys. 96, 15-57, 1984.Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 893, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.