Read More
Date: 18-1-2022
708
Date: 20-1-2022
594
Date: 14-2-2022
1325
|
A reduction system is called confluent (or globally confluent) if, for all , , and such that and , there exists a such that and . A reduction system is said to be locally confluent if, for all , , such that and , there exists a such that and . Here, the notation indicates that is reduced to in one step, and indicates that is reduced to in zero or more steps.
A reduction system is confluent iff it has Church-Rosser property (Wolfram 2002, p. 1036). In finitely terminating reduction systems, global and local confluence are equivalent, for instance in the systems shown above. Reduction systems that are both finitely terminating and confluent are called convergent. In a convergent reduction system, unique normal forms exist for all expressions.
The problem of determining whether a given reduction system is confluent is recursively undecidable.
The property of being confluent is called confluence. Confluence is a necessary condition for causal invariance.
Baader, F. and Nipkow, T. Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 507 and 1036-1037, 2002.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|