المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01



صيغة المعاملات الأربعة Four Factor Formula  
  
1741   10:15 صباحاً   التاريخ: 29-12-2021
المؤلف : د/ محمد شحادة الدغمة و أ.د/ علي محمد جمعة
الكتاب أو المصدر : الفيزياء النووية
الجزء والصفحة : ج2 ص 291
القسم : علم الفيزياء / الفيزياء الحديثة / الفيزياء النووية / مواضيع عامة في الفيزياء النووية /


أقرأ أيضاً
التاريخ: 1-12-2021 2079
التاريخ: 21-4-2017 1907
التاريخ: 29-11-2021 1488
التاريخ: 20-12-2021 2200

صيغة المعاملات الأربعة Four Factor Formula

دعنا نتفحص الآن دورة حياة نيوترون ناتج عن انشطار نووي وماذا يمكن أن يحدث له عندما ينطلق إلى قلب مفاعل نووي. تتراوح طاقة النيوترونات الانشطارية بين الطاقة الحرارية وحوالي 18 م. أ. ف. وسوف نعتبر ما يمكن أن يحدث لنيوترون سريع عندما يدخل إلى المفاعل. وحيث أننا نرغب أحياناً في إجراء انشطار حراري فإنه ينبغي علينا استخدام مهدى Moderator مناسب لتهدئة النيوترونات السريعة وخفض طاقتها إلى الطاقة الحرارية. ومن ثم لا بد للمفاعل من أن يحتوي بالإضافة إلى المادة الانشطارية مواداً مهدئة. وسوف نتناول فيما يلي بالتفصيل دورة حياة نيوترون سريع عند دخوله إلى المفاعل الحراري:

1- الانشطار السريع

عرفنا مما سبق أنه يمكن لليورانيوم — 238 الانشطار بواسطة النيوترونات السريعة وبالتالي هناك احتمال (∋) لهذا الانشطار السريع وسوف نطلق على هذا الاحتمال: معامل الانشطار السريع Fast - Fission Factor ويعرف كما يلي:

لقد وجد أن طاقة البداية لانشطار U238 تساوي حوالي 1 م.ا.ف.

ومن ثم إذا تم امتصاص عدداً من النيوترونات الحرارية قدره (n) عند لحظة زمنية معينة بواسطة الوقود (Fuel) النووي فإننا سنحصل على عدد من النيوترونات السريعة قدره (n ∋) نيوترون قد استطاعت اجتياز طاقة بداية انشطار U238 أي أن طاقة هذه النيوترونات ستساوي حوالي 1 م. أ. ف.

يعتمد حساب ∋ على نظرية الاحتمالات ويحتاج إلى معرفة مساحات مقاطع الانشطار وغير الانشطار والتشتت المرن واللامرن للنيوترونات السريعة في الوقود. وتزداد قيمة (∋) بزيادة احتمال التصادمات التي يقوم بها النيوترون الابتدائي داخل قضيب الوقود أو كومة الوقود الكلية داخل المفاعل. ويزداد هذا الاحتمال بزيادة مساحة المقطع الكلي لتفاعل النيوترون مع الوقود وكذلك يزداد بازدياد نصف قطر قضيب الوقود، ومن ثم تزداد (∋) أيضاً بزيادة هذه الكميات. يبين الشكل (1) معامل الانشطار السريع في شبكة يورانيوم طبيعي - جرافيت واعتماده على نصف قطر قضيب الوقود في الكثير من المفاعلات الحرارية التي تعتمد الجرافيت أو الماء الثقيل كمهدى حيث نجد أن نصف قطر قضبان وقود اليورانيوم الطبيعي المعدني تقارب 1.4 سم ومن ثم فإن (∋) لتساوي حوالي 1.03 (كما بالشكل).

2- الانشطار الكلي

يحتوي المفاعل الحراري على وقود يتكون من U238 قد تم تخصيبه

الشكل (1)

بإضافة U235  أليه وقد يمكن استخدام أنواع أخرى من الوقود إلا أننا من حيث المبدأ سوف نتحصل على نفس النتائج عند استخدام أية أنواع أخرى من الوقود. وبصورة عامة سنعتبر الانشطار الحراري لليورانيوم - 235. دعنا نعرف (v) على أنها عدد النيوترونات الناتجة عن إنشطار U235 بواسطة نيوترون حراري (وتساوي حوالي 2.5 نيوترون لكل انشطار أنظر الجدول 2.14 لقيم v). وسوف نعرف أيضاً الكمية (η) بدلالة (v) حيث نجد أن:

أن أن η تساوي متوسط عدد النيوترونات الناتجة عن الانشطار لكل نيوترون حراري ثم امتصاصه بواسطة الوقود.

كما ويمكن إعطاء η بالعلاقة:

(1)............

حيث Σf ، مساحة مقطع الانشطار الماكروسكوبي (المشاهد) للمواد الانشطارية.

Σa مساحة مقطع الامتصاص الكلي (المشاهد أو الماكروسكوبي) لتفاعلات الانشطار وغير الانشطار في الوقود.

فعلى سبيل المثال إذا كان لذينا خليطاً من U, 235U238 فإن:

وحيث ان:

(2)..................

 

حيث N235/N238 = r (اي النسبة بين النظيرين في الوقود).

σc, σf مساحتي المقطع الميكروسكوبي لتفاعلات الانشطار والأسر، على الترتيب الذي يعطي قيم η لبعض المواد الانشطارية) أما قيمة η في حالة اليورانيوم الطبيعي فتساوي 1.33 للنيوترونات الحرارية وتساوي 1.09 للنيوترونات السريعة.

وسيصبح عدد النيوترونات السريعة التي نحصل عليها مساوياً (n η ∋) نيوترون عندما يتم أسر عدداً من النيوترونات الحرارية قدره (n) بواسطة الوقود.

3- الهروب الرنيني P) Resonance Escape)

أثناء تباطؤ النيوترونات سوف يتم أسر بعضها في تفاعلات غير انشطارية بواسطة بعض المواد الإنشائية وخصوصاً بواسطة  U238. لقد بينت الدراسات أنه توجد هناك عدة قمم امتصاص رنينية في مدى الطاقة الذي يتراوح بين 5 أ. ف. و200 أ.ف. لليورانيوم - 238. وبالتالي فقبل أن تصل النيوترونات إلى الطاقة الحرارية سوف يتم أسر بعضها بواسطة اليورانيوم 238. فإذا رمزنا لاحتمال الهرب من هذا الأسر بالرمز (P) بحيث تمثل (P) احتمال الهرب من الأسر الرنيني الذي يعبر عن احتمال وصول النيوترون إلى الطاقة الحرارية قبل أن يمتص. ويعتمد هذا الاحتمال على مساحتي المقطعين الماكروسكوبيين للامتصاص والتشتت لمنظومة الوقود - المهدئ. نبين في الشكل (2) قيم (P) كدالة في إنصاف أقطار قضبان الوقود والخلايا المنظومة يورانيوم طبيعي - جرافيت مربعة الشكل غير متجانسة (Heterogeneous).

الشكل (2)

وهكذا نجد أن احتمال الهرب الرنيني (P) يزداد بزيادة كل من:

أ) نصغ قطر قضيب الوقود (عند تركيز معين) .

ب) نسبة حجم المهدئ إلى حجم الوقود (عند نصف قطر معين).

مما سبق يتضح لنا أن عدد النيوترونات التي ستصل إلى الطاقة الحرارية قبل أن يحدث لها امتصاص يساوي n η P ∋.

4- الاستفادة الحرارية Thermal Utilization

عندما تصل النيوترونات إلى الطاقة الحرارية - بعد اجتياز المراحل السابقة - فإنها تأخذ في الانتشار عبر المنظومة (المفاعل). وفي نهاية الأمر سيمتص البعض فها بواسطة اليورانيوم وينتج الانشطار النووي كما وأن بعضها سيمتص بواسطة المهدئ أو الدرع الواقي (Shield) للمفاعل أو أية مواد إنشائية أخرى أو الشوائب (وغالباً ما تعرف هذه المراكز (بالسموم)). وبالتالي فإنه لا تستخدم جميع النيوترونات الحرارية في تفاعلات الانشطار. ولذلك أدخل مفهوم معامل الاستفادة الحرارية (f) حيث:

وتعتمد f على كل من طبيعة الوقود المستخدمة والمهدئ (كما في حالة الهروب الرنيني السابقة).

فإذا كان لدينا فيض من النيوترونات الحرارية قدره ∅ فإن معدل امتصاص النيوترونات في وحدة الحجوم في وحدة الزمن يساوي ∅ Σa حيث Σa مساحة المقطع الماكروسكوبي للامتصاص. ومن ثم يصبح معدل الامتصاص في الحجم V مساويا ∅ Σa V في وحدة الزمن.

وباستخدام التعريف السابق لمعامل الاستفادة الحراري f نجد أن:

(1)................

حيث m,u ,i ترمز إلى الوقود(اليورانيوم) ، المهدى، الشوائب، على الترتيب.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.