المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

مفهوم الحرارة عند جون كارل فيلكه (القرن 18م)
2023-04-18
Quadratic Reciprocity Theorem
20-10-2020
حكم المبتدأة ان كان لها تميز.
22-1-2016
Written English
4-3-2022
انتشار امراض سوء التغذية
10-1-2019
قصة حنين
18-11-2014

Galton Board  
  
1997   03:49 مساءً   date: 17-10-2021
Author : Chepelianskii, A. D. and Shepelyansky, D. L
Book or Source : Phys. Rev. Lett. 87
Page and Part : ...


Read More
Date: 6-1-2016 973
Date: 4-11-2021 1714
Date: 13-9-2021 1143

Galton Board

GaltonBoard

The Galton board, also known as a quincunx or bean machine, is a device for statistical experiments named after English scientist Sir Francis Galton. It consists of an upright board with evenly spaced nails (or pegs) driven into its upper half, where the nails are arranged in staggered order, and a lower half divided into a number of evenly-spaced rectangular slots. The front of the device is covered with a glass cover to allow viewing of both nails and slots. In the middle of the upper edge, there is a funnel into which balls can be poured, where the diameter of the balls must be much smaller than the distance between the nails. The funnel is located precisely above the central nail of the second row so that each ball, if perfectly centered, would fall vertically and directly onto the uppermost point of this nail's surface (Kozlov and Mitrofanova 2002). The figure above shows a variant of the board in which only the nails that can potentially be hit by a ball dropped from the funnel are included, leading to a triangular array instead of a rectangular one.

Each time a ball hits one of the nails, it can bounce right (or left) with some probability p (and q=1-p). For symmetrically placed nails, balls will bounce left or right with equal probability, so p=q=1/2. If the rows are numbered from 0 to N-1, the path of each falling ball is a Bernoulli trial consisting of N steps. Each ball crosses the bottom row hitting the nth peg from the left (where 0<=n<=N-1) iff it has taken exactly n right turns, which occurs with probability

 P_p(n|N)=(N; n)p^nq^(N-n).

This process therefore gives rise to a binomial distribution of in the heights of heaps of balls in the lower slots.

If the number of balls is sufficiently large and p=q=1/2, then according to the weak law of large numbers, the distribution of the heights of the ball heaps will approximate a normal distribution.

Some care is needed to obtain these idealized results, however, as the actual distribution of balls depends on physical properties of the setup, including the elasticity of the balls (as characterized by their coefficient of restitution), the radius of the nails, and the offsets of the balls over the funnel's opening when they are dropped (Kozlov and Mitrofanova 2002).


REFERENCES:

Chepelianskii, A. D. and Shepelyansky, D. L. Phys. Rev. Lett. 87, 034101-1, 2001.

Galton, F. Natural Inheritance. New York: Macmillan, 1894.

"Galton's Board or Quincunx." http://www.stattucino.com/berrie/dsl/Galton.html.

Hoover, W. G. In Microscopic Simulations of Complex Hydrodynamic Phenomena (Ed. M. Mareschal and B. L. Holian). New York: Plenum, 1992.

Hoover, W. G. and Moran, B. Phys. Rev. A 40, 5319, 1989.

Kozlov, V. V. and Mitrofanova, M. Yu. "Galton Board." Regular Chaotic Dynamics 8, 431-439, 2002.

Kumič, K. In Unsolved Problems of Noise and Fluctuations: UPoN'99: Second International Conference, Adelaide, Australia 11-15 July 1999 (Ed. D. Abbott and L. B. Kish). Melville: American Institute of Physics, 2000.

Lue, A. and Brenner, H. Phys. Rev. E 47, 3128, 1993.

Moran, B. and Hoover, W. G. J. Stat. Phys. 48, 709, 1987.

Physics at Davidson. "Galton Board." http://webphysics.davidson.edu/Applets/galton4/galton_mean.html.

University of Alabama in Huntsville. "The Galton Board Experiment." http://www.math.uah.edu/stat/applets/GaltonBoardExperiment.xhtml.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.