x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Traveling Salesman Problem
المؤلف: Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W.
المصدر: "Finding Cuts in the TSP (a Preliminary Report)." Technical Report 95-05, DIMACS. Piscataway NJ: Rutgers University, 1995.
الجزء والصفحة: ...
21-12-2021
1761
The traveling salesman problem is a problem in graph theory requiring the most efficient (i.e., least total distance) Hamiltonian cycle a salesman can take through each of cities. No general method of solution is known, and the problem is NP-hard.
The Wolfram Language command FindShortestTour[g] attempts to find a shortest tour, which is a Hamiltonian cycle (with initial vertex repeated at the end) for a Hamiltonian graph if it returns a list with first element equal to the vertex count of .
The traveling salesman problem is mentioned by the character Larry Fleinhardt in the Season 2 episode "Rampage" (2006) of the television crime drama NUMB3RS.
REFERENCES:
Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W. "Finding Cuts in the TSP (a Preliminary Report)." Technical Report 95-05, DIMACS. Piscataway NJ: Rutgers University, 1995.
Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W. "Solving Traveling Salesman Problems." http://www.tsp.gatech.edu/.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 168-169, 1998.
Kruskal, J. B. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem." Proc. Amer. Math. Soc. 7, 48-50, 1956.
Lawler, E.; Lenstra, J.; Rinnooy Kan, A.; and Shmoys, D. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. New York: Wiley, 1985.
Lin, S. "Computer Solutions of the Traveling Salesman Problem." Bell System Tech. J. 44, 2245-2269, 1965.
Platzman, L. K. and Bartholdi, J. J. "Spacefilling Curves and the Planar Travelling Salesman Problem." J. Assoc. Comput. Mach. 46, 719-737, 1989.
Reinelt, G. "TSPLIB--A Traveling Salesman Problem Library." ORSA J. Comput. 3, 376-384, 1991.
Rosenkrantz, D. J.; Stearns, R. E.; and Lewis, P. M. "An Analysis of Several Heuristics for the Traveling Salesman Problem." SIAM J. Comput. 6, 563-581, 1977.
Skiena, S. "Traveling Salesman Tours." §5.3.5 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 199-202, 1990.
Skiena, S. S. "Traveling Salesman Problem." §8.5.4 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 319-322, 1997.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 120-121, 1999.