Read More
Date: 14-7-2021
1535
Date: 25-6-2017
1243
Date: 16-7-2021
936
|
An embedding is a representation of a topological object, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved. For example, a field embedding preserves the algebraic structure of plus and times, an embedding of a topological space preserves open sets, and a graph embedding preserves connectivity.
One space is embedded in another space when the properties of restricted to are the same as the properties of . For example, the rationals are embedded in the reals, and the integers are embedded in the rationals. In geometry, the sphere is embedded in as the unit sphere.
Let and be structures for the same first-order language , and let be a homomorphism from to . Then is an embedding provided that it is injective (Enderton 1972, Grätzer 1979, Burris and Sankappanavar 1981).
For example, if and are partially ordered sets, then an injective monotone mapping may not be an embedding from into . To be an embedding, such a mapping must preserve order "both ways":
REFERENCES:
Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981. https://www.thoralf.uwaterloo.ca/htdocs/ualg.html.
Enderton, H. B. A Mathematical Introduction to Logic. New York: Academic Press, 1972.
Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.
|
|
كل ما تود معرفته عن أهم فيتامين لسلامة الدماغ والأعصاب
|
|
|
|
|
ماذا سيحصل للأرض إذا تغير شكل نواتها؟
|
|
|
|
|
جامعة الكفيل تناقش تحضيراتها لإطلاق مؤتمرها العلمي الدولي السادس
|
|
|