المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
دين الله ولاية المهدي
2024-11-02
الميثاق على الانبياء الايمان والنصرة
2024-11-02
ما ادعى نبي قط الربوبية
2024-11-02
وقت العشاء
2024-11-02
نوافل شهر رمضان
2024-11-02
مواقيت الصلاة
2024-11-02


Littlewood Conjecture  
  
608   01:06 صباحاً   date: 14-10-2020
Author : Einsiedler, M.; Katok, A.; and Lindenstrauss, E.
Book or Source : "Invariant Measures and the Set of Exceptions to Littlewood,s Conjecture." Ann. Math. 164
Page and Part : ...


Read More
Date: 9-12-2020 710
Date: 27-10-2020 533
Date: 10-2-2020 2124

Littlewood Conjecture

The Littlewood conjecture states that for any two real numbers x,y in R,

 lim inf_(n->infty)n|nx-nint(nx)||ny-nint(ny)|=0

where nint(z) denotes the nearest integer function.

In layman's terms, this conjecture concerns the simultaneous approximation of two real numbers by rationals, indeed saying that any two real numbers x and y can be simultaneously approximated at least moderately well by rationals having the same denominator (Venkatesh 2007).

Though proof of the Littlewood conjecture still remains an open problem, many partial results exist. For example, Borel showed that the set of exceptional pairs (x,y) of real numbers x and y for which the conjecture fails has Lebesgue measure zero. Much later, Einsiedler et al. (2006) proved that the set of pairs of exceptional points also has Hausdorff dimension zero.


REFERENCES:

Einsiedler, M.; Katok, A.; and Lindenstrauss, E. "Invariant Measures and the Set of Exceptions to Littlewood's Conjecture." Ann. Math. 164, 513-560, 2006.

Venkatesh, A. "The Work of Einsiedler, Katok, and Lindenstrauss on the Littlewood Conjecture." Bull. Amer. Math. Soc.45, 117-134, 2008.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.