المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

ETHYLENE-PROPYLENE RUBBER
29-9-2017
علاقة مصر بجزر البحر الأبيض المتوسط.
2024-03-24
شروط نجاح عملية تخطيط الخدمات - نظام تصنيف الخدمات
2023-02-10
أبعاد الاعجاز القرآني
16-09-2014
أسقف الاستديو
14/9/2022
مميزات زراعة الصوب الزراعية (مميزات زراعة البيوت المحمية)
14-6-2017

Consecutive Number Sequences  
  
1021   01:38 صباحاً   date: 21-9-2020
Author : Allouche, J.-P. and Shallit, J.
Book or Source : Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, 2003.
Page and Part : ...


Read More
Date: 17-1-2021 723
Date: 16-8-2020 1000
Date: 20-4-2020 1401

Consecutive Number Sequences

Consecutive number sequences are sequences constructed by concatenating numbers of a given type. Many of these sequences were considered by Smarandache and so are sometimes known as Smarandache sequences.

The most obvious consecutive number sequence is the sequence of the first n positive integers joined left-to-right, namely 1, 12, 123, 1234, ... (OEIS A007908; Smarandache 1993, Dumitrescu and Seleacu 1994, sequence 1; Mudge 1995; Stephan 1998; Wolfram 2002, p. 913). In this work, members of this sequence will be termed Smarandache numbers and the nth such number written Sm(n). No Smarandache primes Sm(n) exist for n<=344869 (Great Smarandache PRPrime search; Dec. 5, 2016).

The nth term r_n=Smr(n) of the "reverse integer sequence" consists of the concatenation of the first n positive integers written right-to-left: 1, 21, 321, 4321, ... (OEIS A000422; Smarandache 1993, Dumitrescu and Seleacu 1994, Stephan 1998). The terms up to n=9 are given by

r_n = sum_(k=1)^(n)k·10^(k-1)

(1)

= 1/(81)(9·10^nn-10^n+1).

(2)

The terms of the reverse integer sequence have the same number of digits as the consecutive integer sequence. The first few reverse integer concatenated primes occur for n=82 and 37765 (OEIS A176024), as summarized in the following table. No other primes occur for n<=48249 (E. Weisstein, Nov. 10, 2015) or 50000<=n<=80000 (Batalov, Nov. 9, 2015).

n digits discoverer
82 155 Stephan (1998), Fleuren (1999)
37765 177719 E. W. Weisstein (Apr. 6, 2010)

There is an amazing connection between the numbers c_nr_n, the Demlo numbers, and the repunits.

The concatenation of the first n primes is called a Smarandache-Wellin number, the first few of which are 2, 23, 235, 2357, 235711, ... (OEIS A019518). The first few Smarandache-Wellin primes are 2, 23, 2357, ... (OEIS A069151), corresponding to concatenations of the first n=1, 2, 4, 128, 174, 342, 435, 1429 (OEIS A046035) primes and having 1, 2, 4, 355, 499, 1171, 1543, 5719 (OEIS A263959) decimal digits.

If digit sequences corresponding to concatenation of a right-truncated final prime are allowed, more primes are possible. In fact, these are precisely the Copeland-Erdős-constant primes, the first few of which are 2, 23, 2357, 23571113171, ... (OEIS A227529) and which have 1, 2, 4, 11, 353, 355, 499, 1171, 1543, 5719, 11048, 68433, 97855, 292447, ... decimal digits (OEIS A227530).

The concatenation of the first n odd numbers gives 1, 13, 135, 1357, 13579, ... (OEIS A019519; Smith 1996, Marimutha 1997, Mudge 1997). This sequence is prime for terms 2, 10, 16, 34, 49, 2570, ... (OEIS A046036; Weisstein, Ibstedt 1998, pp. 75-76), with no others less than 37369 (Weisstein, Oct. 9, 2015). The corresponding primes are 13, 135791113151719, 135791113151719212325272931, ... (OEIS A048847). The 2570th term, given by 1 3 5 7...5137 5139, has 9725 digits and was discovered by Weisstein in Aug. 1998.

The concatenation of the first n even numbers gives 2, 24, 246, 2468, 246810, ... (OEIS A019520; Smith 1996; Marimutha 1997; Mudge 1997; Ibstedt 1998, pp. 77-78).

The concatenation of the first n square numbers gives 1, 14, 149, 14916, ... (OEIS A019521; Marimutha 1997). The only prime in the first 33432 terms is the third term, 149, (Weisstein, Oct. 9, 2015).

The concatenation of the first n triangular numbers gives 1, 13, 136, 13610, ... (OEIS A078795). The only primes in the first 35177 terms occur for terms 2 and 6, corresponding to primes 13 and 136101521 (OEIS A158750; Weisstein, Oct. 9, 2015).

The concatenation of the first n cubic numbers gives 1, 18, 1827, 182764, ... (OEIS A019522; Marimutha 1997). There are no primes in the first 31152 terms (Weisstein, Oct. 9, 2009).

The concatenation of the first n Fibonacci numbers gives 1, 11, 112, 1123, 11235, ... (OEIS A019523; Marimutha 1997). There are no primes in the first 1580 terms other than n=2 and 4, corresponding to primes 11 and 1123 (E. Weisstein, Jul. 15, 2016).


REFERENCES:

--. "The Great Smarandache PRPrime search." https://smarandache.ddns.net:1200/server_stats.html.

Allouche, J.-P. and Shallit, J. Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, 2003.

Balatov, S. "RE: lovely open problem." Oct. 18, 2015. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1510&L=NMBRTHRY&F=&S=&P=7439.

Balatov, S. Nov. 9, 2015. https://www.mersenneforum.org/showpost.php?p=415559&postcount=17.

Dumitrescu, C. and Seleacu, V. (Eds.). Some Notions and Questions in Number Theory. Glendale, AZ: Erhus University Press, 1994.

Fleuren, M. "Smarandache Factors and Reverse Factors." Smarandache Notions J. 10, 5-38, 1999.

Ibstedt, H. "Smarandache Concatenated Sequences." Ch. 5 in Computer Analysis of Number Sequences. Lupton, AZ: American Research Press, pp. 75-79, 1998.

Marimutha, H. "Smarandache Concatenate Type Sequences." Bull. Pure Appl. Sci. 16E, 225-226, 1997.

Mudge, M. "Top of the Class." Personal Computer World, 674-675, June 1995.

Mudge, M. "Not Numerology but Numeralogy!" Personal Computer World, 279-280, 1997.

Rivera, C. "Problems & Puzzles: Puzzle 008-Primes by Listing." https://www.primepuzzles.net/puzzles/puzz_008.htm.

Sloane, N. J. A. Sequences A000422, A007908, A019518, A019519, A019520, A019521, A019522, A019523, A046035, A046036, A046284, A048847, A069151, A071620, A078795, A158750, A176024, A176942, A227529, and A227530 in "The On-Line Encyclopedia of Integer Sequences."

Smarandache, F. Only Problems, Not Solutions!, 4th ed. Phoenix, AZ: Xiquan, 1993.

Smith, S. "A Set of Conjectures on Smarandache Sequences." Bull. Pure Appl. Sci. 15E, 101-107, 1996.

Stephan, R. W. "Factors and Primes in Two Smarandache Sequences." Smarandache Notions J. 9, 4-10, 1998.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 913, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.