Knödel Numbers					
				 
				
					
						
						 المؤلف:  
						Makowski, A. 					
					
						
						 المصدر:  
						 "Generalization of Morrow,s D-Numbers." Simon Stevin 36					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						17-1-2021
					
					
						
						1131					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Knödel Numbers
For every 
, let 
 be the set of composite numbers 
 such that if 
, 
 (where GCD is the greatest common divisor), then 
.
Special cases include 
, which is the set of Carmichael numbers, and 
, which gives the D-numbers.
Makowski (1962/1963) proved that there are infinitely many members of 
 for 
. The following table summarized Knödel numbers 
 for small 
.
	
		
			  | 
			OEIS | 
			  | 
		
		
			| 1 | 
			A002997 | 
			561, 1105, 1729, 2465, 2821, 6601, 8911, ... | 
		
		
			| 2 | 
			A050990 | 
			4, 6, 8, 10, 12, 14, 22, 24, 26, 30, ... | 
		
		
			| 3 | 
			A033553 | 
			9, 15, 21, 33, 39, 51, 57, 63, 69, 87, ... | 
		
		
			| 4 | 
			A050992 | 
			6, 8, 12, 16, 20, 24, 28, 40, 44, 48, ... | 
		
		
			| 5 | 
			A050993 | 
			25, 65, 85, 145, 165, 185, 205, ... | 
		
	
REFERENCES:
Makowski, A. "Generalization of Morrow's 
-Numbers." Simon Stevin 36, 71, 1962/1963.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 125-126, 1989.
Sloane, N. J. A. Sequences A002997/M5462, A033553, A050990, A050992, and A050993 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة