المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

الاختيار لمن يعلم بما تخفي الصدور وما تكن الضمائر
25-8-2019
الترايازول
2024-05-04
التكتلات الاقتصادية - السوق الأوربية المشتركة
26-5-2022
التفسير لغة واصطلاحا
23-09-2015
إخفاء أبعاد الفضاء
2023-03-08
قاتل الميكروبات Microbicidal
19-2-2019

Jevons, Number  
  
895   03:29 مساءً   date: 3-8-2020
Author : Golomb, S. W.
Book or Source : "On the Factorization of Jevons, Number." Cryptologia 20
Page and Part : ...


Read More
Date: 9-1-2020 1579
Date: 24-12-2019 1874
Date: 2-9-2020 500

Jevons' Number

A semiprime which English economist and logician William Stanley Jevons incorrectly believed no one else would be able to factor. According to Jevons (1874, p. 123), "Can the reader say what two numbers multiplied together will produce the number 8616460799? I think it unlikely that anyone but myself will ever know."

Actually, a modern computer can factor this number in a few milliseconds as the product of two five-digit numbers:

 8616460799=89681×96079.

Published factorizations include those by Lehmer (1903) and Golomb (1996).


REFERENCES:

Golomb, S. W. "On the Factorization of Jevons' Number." Cryptologia 20, 243-244, Jul. 1996.

Jevons, W. S. The Principles of Science: A Treatise on Logic and Scientific Method. London: Macmillan, 1874. Reprinted by Kessinger, 2007.

Lehmer, D. N. "A Theorem in the Theory of Numbers." Read before the San Francisco Section of the American Mathematical Society. Dec. 19, 1903.

Žerovnik, J. "The RSA Cryptosystem in 1873." Obzornik Mat. Fiz. 43, 116-118, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.