المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تصنيف المشكلات
29-6-2016
حكام بني العباس والامام الهادي (عليه السلام)
26-1-2018
الامراض التي تصيب الزيتون
31-12-2015
Hydroxides of Group 1 metals
15-1-2018
نجم F star F
26-6-2019
الاعتقاد بالمعاد يتنافى مع المنطق والعقل
15-11-2016

Fundamental Region  
  
694   01:36 صباحاً   date: 23-12-2019
Author : Apostol, T. M
Book or Source : "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 3-10-2020 476
Date: 7-10-2020 682
Date: 13-8-2020 517

Fundamental Region

Let G be a subgroup of the modular group Gamma. Then an open subset R_G of the upper half-plane H is called a fundamental region of G if

1. No two distinct points of R_G are equivalent under G,

2. If tau in H, then there is a point  in the closure of R_G such that  is equivalent to tau under G.

FundamentalRegion

A fundamental region R_Gamma of the modular group Gamma is given by tau in H such that |tau|>1 and |tau+tau^_|<1, illustrated above, where tau^_ is the complex conjugate of tau (Apostol 1997, p. 31). Borwein and Borwein (1987, p. 113) define the boundaries of the region slightly differently by including the boundary points with R[tau]<=0.


REFERENCES:

Apostol, T. M. "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 30-34, 1997.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-113, 1987.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.