المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19


Hall-Littlewood Polynomial  
  
1110   05:15 مساءً   date: 18-9-2019
Author : Fulman, J.
Book or Source : "The Rogers-Ramanujan Identities, the Finite General Linear Groups, and the Hall-Littlewood Polynomials." Proc. Amer. Math. Soc. 128
Page and Part : ...


Read More
Date: 12-8-2018 1910
Date: 20-9-2019 1361
Date: 19-5-2018 1659

Hall-Littlewood Polynomial

Let n be an integer such that n>=lambda_1, where lambda=(lambda_1,lambda_2,...) is a partition of n=|lambda| if lambda_1>=lambda_2>=...>=0, where lambda_i are a sequence of positive integers stabilizing 0 such that sum_(i)lambda_i=n. Also let m_i(lambda) be the number of parts of lambda of size i. Then the permutation w in S_n, where S_n is the symmetric group, acts on the variables x_1, ..., x_n by sending x_i to x_(w(i)). Letting t be a complex number, the Hall-Littlewood polynomials are defined by

 P_lambda(x_1,...,x_n;t) 
 =1/(product_(i>=0)product_(r=1)^(m_i(lambda))(1-t^r)/(1-t))sum_(w in S_n)w(x_1^(lambda_1)...x_n^(lambda_n)product_(i<j)(x_i-tx_j)/(x_i-x_j)).

These polynomials interpolate between the Schur functions (with t=0) and the monomial symmetric functions (with t=1; Fulman 1999).


REFERENCES:

Fulman, J. "The Rogers-Ramanujan Identities, the Finite General Linear Groups, and the Hall-Littlewood Polynomials." Proc. Amer. Math. Soc. 128, 17-25, 1999.

Macdonald, I. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford, England: Oxford University Press, p. 208, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.