Read More
Date: 24-3-2019
![]()
Date: 26-8-2019
![]()
Date: 23-6-2019
![]() |
Expressions of the form
![]() |
(1) |
are called nested radicals. Herschfeld (1935) proved that a nested radical of real nonnegative terms converges iff is bounded. He also extended this result to arbitrary powers (which include continued square roots and continued fractions as well), a result is known as Herschfeld's convergence theorem.
Nested radicals appear in the computation of pi,
![]() |
(2) |
(Vieta 1593; Wells 1986, p. 50; Beckmann 1989, p. 95), in trigonometrical values of cosine and sine for arguments of the form , e.g.,
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Nest radicals also appear in the computation of the golden ratio
![]() |
(7) |
and plastic constant
![]() |
(8) |
Both of these are special cases of
![]() |
(9) |
which can be exponentiated to give
![]() |
(10) |
so solutions are
![]() |
(11) |
In particular, for , this gives
![]() |
(12) |
The silver constant is related to the nested radical expression
![]() |
(13) |
There are a number of general formula for nested radicals (Wong and McGuffin). For example,
![]() |
(14) |
which gives as special cases
![]() |
(15) |
(,
,
),
![]() |
(16) |
(), and
![]() |
(17) |
(). Equation (14) also gives rise to
![]() |
(18) |
which gives the special case for ,
,
, and
,
![]() |
(19) |
Equation (◇) can be generalized to
![]() |
(20) |
for integers , which follows from
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
In particular, taking gives
![]() |
(26) |
(J. R. Fielding, pers. comm., Oct. 8, 2002).
Ramanujan discovered
![]() |
(27) |
which gives the special cases
![]() |
(28) |
for ,
(Ramanujan 1911; Ramanujan 2000, p. 323; Pickover 2002, p. 310), and
![]() |
(29) |
for ,
, and
. The justification of this process in general (and in the particular example of
, where
is Somos's quadratic recurrence constant) is given by Vijayaraghavan (in Ramanujan 2000, p. 348).
An amusing nested radical follows rewriting the series for e
![]() |
(30) |
as
![]() |
(31) |
so
![]() |
(32) |
(J. R. Fielding, pers. comm., May 15, 2002).
REFERENCES:
Beckmann, P. A History of Pi, 3rd ed. New York: Dorset Press, 1989.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 14-20, 1994.
Borwein, J. M. and de Barra, G. "Nested Radicals." Amer. Math. Monthly 98, 735-739, 1991.
Herschfeld, A. "On Infinite Radicals." Amer. Math. Monthly 42, 419-429, 1935.
Jeffrey, D. J. and Rich, A. D. In Computer Algebra Systems (Ed. M. J. Wester). Chichester, England: Wiley, 1999.
Landau, S. "A Note on 'Zippel Denesting.' " J. Symb. Comput. 13, 31-45, 1992a.
Landau, S. "Simplification of Nested Radicals." SIAM J. Comput. 21, 85-110, 1992b.
Landau, S. "How to Tangle with a Nested Radical." Math. Intell. 16, 49-55, 1994.
Landau, S. ": Four Different Views." Math. Intell. 20, 55-60, 1998.
Pólya, G. and Szegö, G. Problems and Theorems in Analysis, Vol. 1. New York: Springer-Verlag, 1997.
Ramanujan, S. Question No. 298. J. Indian Math. Soc. 1911.
Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., p. 327, 2000.
Sizer, W. S. "Continued Roots." Math. Mag. 59, 23-27, 1986.
Vieta, F. Uriorum de rebus mathematicis responsorum. Liber VII. 1593. Reprinted in New York: Georg Olms, pp. 398-400 and 436-446, 1970.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
Wong, B. and McGuffin, M. "The Museum of Infinite Nested Radicals." http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.html.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|