Read More
Date: 13-3-2019
![]()
Date: 13-3-2019
![]()
Date: 13-3-2019
![]() |
The asymptotic series for the gamma function is given by
![]() |
(1) |
(OEIS A001163 and A001164).
The coefficient of
can given explicitly by
![]() |
(2) |
where is the number of permutations of
with
permutation cycles all of which are
(Comtet 1974, p. 267). Another formula for the
s is given by the recurrence relation
![]() |
(3) |
with , then
![]() |
(4) |
where is the double factorial (Borwein and Corless 1999).
The series for is obtained by adding an additional factor of
,
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
The expansion of is what is usually called Stirling's series. It is given by the simple analytic expression
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(OEIS A046968 and A046969), where is a Bernoulli number. Interestingly, while the numerators in this expansion are the same as those of
for the first several hundred terms, they differ at
, 1185, 1240, 1269, 1376, 1906, 1910, ... (OEIS A090495), with the corresponding ratios being 37, 103, 37, 59, 131, 37, 67, ... (OEIS A090496).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 257, 1972.
Arfken, G. "Stirling's Series." §10.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 555-559, 1985.
Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 267, 1974.
Conway, J. H. and Guy, R. K. "Stirling's Formula." In The Book of Numbers. New York: Springer-Verlag, pp. 260-261, 1996.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 86-88, 2003.
Marsaglia, G. and Marsaglia, J. C. "A New Derivation of Stirling's Approximation to ." Amer. Math. Monthly 97, 826-829, 1990.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 443, 1953.
Sloane, N. J. A. Sequences A001163/M5400, A001164/M4878, A046968, A046969, A090495, and A090496 in "The On-Line Encyclopedia of Integer Sequences."
Uhler, H. S. "The Coefficients of Stirling's Series for ." Proc. Nat. Acad. Sci. U.S.A. 28, 59-62, 1942.
Wrench, J. W. Jr. "Concerning Two Series for the Gamma Function." Math. Comput. 22, 617-626, 1968.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|