المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الصورة الشعرية
2025-04-08
اسم المفعول
2025-04-08
تفريعات / القسم السادس عشر
2025-04-08
تفريعات / القسم الخامس عشر
2025-04-08
تفريعات / القسم الرابع عشر
2025-04-08
معنى قوله تعالى : هُوَ الَّذِي جَعَلَ الشَّمْسَ ضِيَاءً وَالْقَمَرَ نُورًا
2025-04-08

نبات اللافندر
2024-07-14
لماذا تنقل الدول عواصمها ؟
22-12-2021
Control of Water Transport by Guard Cells
1-11-2016
مـبـادئ التـميـز المـؤسسـي
26/10/2022
حفريات قطعيات المنشآت - اعمال القطع (الحفر)
2023-09-10
التعارض بين الادلة المحرزة والاصول العملية
1-9-2016

Heaviside Calculus  
  
789   03:10 مساءً   date: 12-6-2018
Author : Rota, G.-C.; Kahaner, D.; Odlyzko, A
Book or Source : "On the Foundations of Combinatorial Theory. VIII: Finite Operator Calculus." J. Math. Anal. Appl
Page and Part : ...


Read More
Date: 22-6-2018 1811
Date: 27-5-2018 1016
Date: 5-7-2018 1475

Heaviside Calculus

The study, first developed by Boole, of shift-invariant operators which are polynomials in the differential operator D^~. Heaviside calculus can be used to solve any ordinary differential equation of the form

 p(D^~)f(x)=g(x)

with p(0)!=0, and is frequently implemented using Laplace transforms.


REFERENCES:

Rota, G.-C.; Kahaner, D.; Odlyzko, A. "On the Foundations of Combinatorial Theory. VIII: Finite Operator Calculus." J. Math. Anal. Appl. 42, 684-760, 1973.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.